WERA1021: Spotted Wing Drosophila Biology, Ecology, and Management

(Multistate Research Coordinating Committee and Information Exchange Group)

Status: Active

SAES-422 Reports

Annual/Termination Reports:

[05/31/2024]

Date of Annual Report: 05/31/2024

Report Information

Annual Meeting Dates: 11/10/2024 - 11/13/2024
Period the Report Covers: 10/01/2023 - 09/30/2024

Participants

Hamby, Kelly A kahamby@umd.edu University of Maryland
Rogers, Mary roge0168@umn.edu University of Minnesota
Isaacs, Rufus isaacsr@msu.edu Michigan State University
Wilson, Julianna jkwilson@msu.edu Michigan State University
Asplen, Mark Mark.Asplen@metrostate.edu Metro State University
Zalom, Frank fgzalom@ucdavis.edu University of California, Davis
Guedot, Christelle guedot@wisc.edu University of Wisconsin
Sial, Ashfaq A ashsial@uga.edu Georgia Cooperative Extension
Rodriguez-Saona, Cesar crodriguez@njaes.rutgers.edu Rutgers University
Loeb, Gregory M. gme1@cornell.edu Cornell University
Fanning, Philip philip.fanning@maine.edu University of Maine
Adams, Christopher chris.adams@oregonstate.edu Oregon State University
Wong, Adam Chun Nin, adamcnwong@ufl.edu University of Florida
Zhou, Jianfeng zhoujianf@missouri.edu University of Missouri
Cato, Aaron acato@uada.edu University of Arkansas

Brief Summary of Minutes

The WERA1021 working group meet at the annual National Entomological Society of America meeting. We organized a symposium of talks by researchers from all across the counrty to discuss current research results and ongoing research activities, including a poster section. updates were given on SWD monitoring, parasitoid rearing, control tacti, and extension and outreach activities. 

Accomplishments

<p><strong>Outputs</strong></p><br /> <p><strong>Publications</strong></p><br /> <p><strong>The group has produced the following publications: </strong></p><br /> <p>Gale, C.C., Ferguson, B., Rodriguez-Saona, C., Shields, V.D.C., and Zhang, A. 2024. Evaluation of a push&ndash;pull strategy for spotted-wing drosophila management in highbush blueberry. Insects 15, 47. doi: 10.3390/insects15010047.</p><br /> <p>Quadrel, A., Urbaneja-Bernat, P., Holdcraft, R., and Rodriguez-Saona, C. 2024. Elicitors of plant defenses as a standalone tactic failed to provide sufficient protection to fruits against spotted-wing drosophila. Frontiers in Agronomy 6:1381342, section Pest Management. Research Topic on &ldquo;Latest Research Advances in Biology, Ecology, and Integrated Pest Management of Invasive Insects&rdquo;. doi: 10.3389/fagro.2024.1381342.</p><br /> <p>Sosa-Calvo, J., M. Forshage, M. L. Buffington. 2024. Circumscription of the Ganaspis brasiliensis (Ihering, 1905) species complex (Hymenoptera, Figitidae), and the description of two new species parasitizing the spotted wing drosophila, Drosophila suzukii Matsumura, 1931 (Diptera, Drosophilidae).Environmental Entomology, v. 53, 6, &nbsp;<a href="https://doi.org/10.1093/ee/nvae086">https://doi.org/10.1093/ee/nvae086</a></p><br /> <p>Shrestha, B., Hesler, S.P., Meier, L., Cha, D.H., and Loeb, G.M. 2024.&nbsp; Field testing of 2-pentylfuran as a behavioral control tool for spotted-wing drosophila in raspberries.&nbsp; Journal of Applied Entomology, DOI.org/10.1111/.</p><br /> <p>Gariepy, T.D., Abram, P.K., Adams, C., Beal, D., Berrs, E., Beetle, J., Biddinger, D., Brind&rsquo;Amour, G., Bruni, A., Buffington, M. Burrack, H., Kaane, K.M., Demchak, K., Fanning, P., Gillett, A., Hamby, K., Hoelmer, K., Hogg, B., Isaacs, R. Johnson, B. Lee, J.C., Levensen, H.K., Loeb, G., 2024. Widespread establishment of adventive populations of <em>Leptopilina japonica </em>(Hymenoptera, Figitidae) in north America and development of a multiplex pcr assay to identify key parasitoids of <em>Drosopohila suzukii </em>(Diptera, Drosophilidae). NeoBiota, 93: 63-90, doi: 10.3897/neobiota.93.121219.</p><br /> <p>Roh, G.H., Meier, L., Hesler, S., Zhu, J.J., Kendra, P., Roda, A., Loeb, G. Tay, J., Cha, D.H. 2023. A 2-component blend of coconut oil derived fatty acids as an oviposition deterrent against <em>Drosophila suzukii.&nbsp; </em>Journal of Economic Entomology, 116: 1671-1678, DOI.org/10.1093/jee/toad092.</p><br /> <p>Hubhachen, Z., Fanning, P.F., Abeli, P., Perkins, J., Isaacs, R., and Beaudry, R. 2023. Postharvest control of spotted-wing drosophila and blueberry maggot by low temperature conditions and fumigation with sulfur dioxide. Postharvest Biology and Technology.</p><br /> <p>Hanna McIntosh, Christelle Gu&eacute;dot, Amaya Atucha. 2023. Plastic mulches improve yield and reduce spotted-wing drosophila in primocane raspberry. Scientia Horticulturae, v320, 112203.</p><br /> <p>Pablo Urbaneja-Bernat, Robert Holdcraft, Johnattan Hern&aacute;ndez-Cumplido, Elena M. Rhodes, Oscar E. Liburd, Ashfaq A. Sial, Agenor Mafra-Neto, Cesar Rodriguez-Saona. 2022. Field, semi-field and greenhouse testing of HOOK SWD, a SPLAT-based attract-and-kill formulation to manage spotted-wing drosophila. Journal of Applied Entomology,&nbsp;<a href="https://doi.org/10.1111/jen.13073">https://doi.org/10.1111/jen.13073</a>.</p><br /> <p>Cesar Rodriguez-Saona, Robert Holdcraft, Beth Ferguson. 2022. Control of Spotted-wing Drosophila on Highbush Blueberries. Arthropod Management Tests.</p><br /> <p>Isaacs, R., Van Timmeren, S., Gress, B. E., Zalom, F.G., Ganjisaffar, F., Hamby, K. A., Lewis, M. T., Liburd, O. E., Sarkar, N., Rodriguez-Saona, C., Holdcraft, R., Burrack, H. J., Toennisson, A., Drummond, F., Spaulding, N., Lanka, S., and Sial, A. 2022. Monitoring of spotted-wing drosophila (Diptera: Drosophilidae) resistance status using a RAPID method for assessing insecticide sensitivity across the United States. Journal of Economic Entomology</p><br /> <p>Serhan Mermer, Philip Fanning, Gabriella Tait, Ferdinand Pfab, Christopher Adams, Linda Brewer and Vaughn Walton. (2022) Spotted-wing Drosophila, Relative Rankings and Seasonal Strategies for Insecticide Use. OSU Extension bulletin EM 9360.</p><br /> <p>Carroll, J.E., Marshall, P., Mattoon, N., Weber, C., And Loeb, G. 2022. The impact of ruby-throated hummingbird, <em>Archilochs colubris</em>, predation on spotted-wing drosophila, <em>Drosophila suzukii</em>, in raspberry, <em>Rubus idaeus. </em>Crop Protection, doi.org/10.1016/j.cropro.2022.106116.</p><br /> <p>Schwanitz, T.W., Polashock, J.J., Stockton, D.G., Rodriguez-Saona, C., Sotomayor, D., Loeb, G., and Hawkings, C. 2022. Molecular and behavioral studies reveal differences in olfaction between winter and summer morphs of <em>Drosophila suzukii.</em>&nbsp; PeerJ. doi.org/10.7717/peerj.13825.&nbsp;</p><br /> <p>Jarrett, B.J., Linder, S., Fanning, P.D., Isaacs, R. and Szűcs, M., (2022). Experimental adaptation of native parasitoids to the invasive insect pest, <em>Drosophila suzukii</em>. Biological Control, p.104843.</p><br /> <p>Stockton, D., and Loeb, G.&nbsp; 2022. Diet hierarchies guide temporal-spatial variation in <em>Drosophila suzukii </em>resource use.&nbsp; Frontiers in Ecology and Evolution, DOI: 10.3389/fevo.2021.816557. Isaacs, R., Van Timmeren, S., Gress, B. E., Zalom, F.G., Ganjisaffar, F., Hamby, K. A., Lewis, M. T., Liburd, O. E., Sarkar, N., Rodriguez-Saona, C., Holdcraft, R., Burrack, H. J., Toennisson, A., Drummond, F., Spaulding, N., Lanka, S., and Sial, A. 2022 Monitoring of spotted-wing drosophila (Diptera: Drosophilidae) resistance status using a RAPID method for assessing insecticide sensitivity across the United States. Journal of Economic Entomology https://doi.org/10.1093/jee/toac021.</p><br /> <p>Tait, G., Mermer, S., Stockton, D. Lee, J., Avosani, S., Abrieux, A., Anfora, G., Beers, E., Biondi, A., Burrack, H., Cha, D., Chiu, J., Choi, M., Cloonan, K., Crava, C., Daane, K., Dalton, D., Diepenbrock, L., Fanning, P., Ganjisaffar, F., Gomez, M., Gut, L., Grassi, A., Hamby, K., Hoelmer, K., Ioriatti, C., Issacs, R., Klick, J.,Kraft, L,, Loeb, G., Rossi-Stacconi, M., Nieri, R., Pfab, F., Puppato, S., Rendon, D., Renkema, J., Rodriguez-Saona, C., Rogers, M., Sassu, F., Schoneberg, T., Scott, M., Seagraves, M., Sial, A., Van Timmeren, S., Wallingford, A., Wang, X. Yeh, D., Zalom, F. and Walton, V. 2021.&nbsp; <em>Drosophila suzukii </em>(Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program.&nbsp; Journal of Economic Entomology, doi.org/10.1093/jee/toab158.</p><br /> <p>Lewald, K., Abrieux, A., Wilson, D., Lee, Y., Andreazza, F., Beers, E., Burrack, H., Daane, K., Diepenbrock, L., Drummond, F., Fanning, P., Gaffney, M., Hesler, S., Ioriatti, C., Isaacs, R., Little, B., Loeb, G., Rendon, d., Sial, A., Stockton, D., Van Timmeren, S., Walton, V., Wang, X., Zalom, F., and Chiu, J. 2021. Population structure of <em>Drosophila suzukii </em>and signals of multiple invasions to the continental US. G3, Vol 11, Number 12, doi.org/10.1093/g3journal/jkab343.</p><br /> <p>Stockton, D.G., Cha, D.H., and Loeb, G.M. 2021. Does habituation affect the efficacy of semiochemical ovisposition repellents developed against <em>Drosophila suzukii?&nbsp; </em>Environmental Entomologist 50 (6), 1322-1321, doi.org/10.1093/ee/nvab099.</p><br /> <p>Fanning, P, Lanka, S., Mermer, S., Collins, J., Van Timmeran, S, Andrews, H., Hesler, S., Loeb, G., Drummond, F., Wiman, N., Walton, V., Sial, A., Isaacs, R. 2021. Field and laboratory testing of feeding stimulants to enhance insecticide efficacy against spotted-wing drosophila, <em>Drosophila suzukii</em> (Matsumura). Journal of Economic Entomology, 114: 1638-1646, doi.org/10.1093/jee/toab084.</p><br /> <p>Stockton, D. G., and Loeb, G. 2021. Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing Drosophila winter morphotypes.&nbsp; Journal of Insect Physiology, 131:104246, doi.org/10.1016/j.jinsphys.2021/104246.</p><br /> <p>Bing, X., Winkler, J., Gerlach, J., Loeb, G., and Buchon, N. 2021. Identification of natural pathogens from wild <em>Drosophila suzukii</em>.&nbsp; Pest Management Science, Vol 77, Issue 4, 1594-1606, doi.org/10.1002/ps.6235 Hubhachen, Z., Fanning, P.F., Abeli, P., Perkins, J., Isaacs, R., and Beaudry, R. (2023). Postharvest control of spotted-wing drosophila and blueberry maggot by low temperature conditions and fumigation with sulfur dioxide. Postharvest Biology and Technology.</p><br /> <p>Lewald, K., Abrieux, A., Wilson, D., Lee, Y., Conner, W., Andreazza, F., Beers, E., Burrack, H., Daane, K., Diepenbrock, L., Drummond, F., Fanning, P., Gaffney, M., Hesler, S., Ioriatti, C., Isaacs, C., Little, B., Loeb, G., Miller, B., Nava, D., Rendon, D., Sial, A., Da Silva, C., Stockton, D., Van Timmeren, S., Wallingford, A., Walton, V., Wang, X., Zhao, B., Zalom, B., Chiu, J. (2021) Population genomics of <em>Drosophila suzukii</em> reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3.</p><br /> <p>Van Timmeren, S., Davis, A.R., and Isaacs, R. 2021. Optimization of a larval sampling method for monitoring Drosophila suzukii (Diptera: Drosophilidae) in blueberries. Journal of Economic Entomology. 114: 1690&ndash;1700. doi: 10.1093/jee/toab096.</p><br /> <p>Mermer, S., Pfab, F., Tait, G., Isaacs, R., Fanning, P.D., Van Timmeren, S., Loeb, G.M., Hesler, S.P., Sial, A.A.,&nbsp;Hunter, J.H., Bal, H.K., Drummond, F., Ballman, E., Collins, J., Xue, L., Jiang, D., and Walton, V.M. 2021. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. Journal of Pest Science. 94: 743&ndash;755. doi:10.1007/s10340-020-01292-w.</p><br /> <p>&nbsp;</p><br /> <p><strong>Activities</strong></p><br /> <p>Professional Scientific talks to peers:</p><br /> <p>17 talks at the National Entomology Meeting in Phenix AZ, plus a poster session and panel discussion on the topic of SWD biocontrol were given under the Symposium title of Empowering Pest Management: Biological Control Strategies Against Spotted-wing Drosophila. &nbsp;</p><br /> <p>Professional Scientific talks to stakeholders.</p><br /> <p>Each of the 15 listed members and their students have also presented research results at grower multiple meetings in their respective states or regions to their stakeholders.</p><br /> <p><strong>Milestones</strong></p><br /> <p>We have increased monitoring efforts for SWD parasitoids across the country.</p><br /> <p>We have increased understanding of the species complex attacking SWD, describing new species.</p><br /> <p>We have improved monitoring tools for SWD, making testing faster, less expensive, and more reliable.&nbsp;</p><br /> <p>We have published a relative pesticide efficacy chart that lists trade name pesticides by their mode of action to help inform rotation decisions. This tool continues to be used</p><br /> <p>The group has identified key adventive populations of SWD parasitoids, and native species that have been found to attack SWD. Several states have established colonies of these wasps and begun augmentative biocontrol release programs.</p><br /> <p>&nbsp;</p><br /> <p><strong>Improved Outcomes</strong></p><br /> <p>Improved understanding and reclassification of the species complex Ganaspis and its national distribution.</p><br /> <p>Improved testing methods for the development of insecticide resistance within local and regional populations. &nbsp;</p><br /> <p>Improved monitoring techniques for SWD infested fruit.</p><br /> <p>Rearing techniques for parasitoids of SWD have been established, published and shared with the national working group and continue to be improved upon.</p><br /> <p>Improved understanding of biocontrol (for growers) that has reduced reliance on prophylactic pesticide applications.&nbsp;</p>

Publications

<p>Gale, C.C., Ferguson, B., Rodriguez-Saona, C., Shields, V.D.C., and Zhang, A. 2024. Evaluation of a push&ndash;pull strategy for spotted-wing drosophila management in highbush blueberry. Insects 15, 47. doi: 10.3390/insects15010047.</p><br /> <p>Quadrel, A., Urbaneja-Bernat, P., Holdcraft, R., and Rodriguez-Saona, C. 2024. Elicitors of plant defenses as a standalone tactic failed to provide sufficient protection to fruits against spotted-wing drosophila. Frontiers in Agronomy 6:1381342, section Pest Management. Research Topic on &ldquo;Latest Research Advances in Biology, Ecology, and Integrated Pest Management of Invasive Insects&rdquo;. doi: 10.3389/fagro.2024.1381342.</p><br /> <p>Sosa-Calvo, J., M. Forshage, M. L. Buffington. 2024. Circumscription of the Ganaspis brasiliensis (Ihering, 1905) species complex (Hymenoptera, Figitidae), and the description of two new species parasitizing the spotted wing drosophila, Drosophila suzukii Matsumura, 1931 (Diptera, Drosophilidae).Environmental Entomology, v. 53, 6, &nbsp;<a href="https://doi.org/10.1093/ee/nvae086">https://doi.org/10.1093/ee/nvae086</a></p><br /> <p>Shrestha, B., Hesler, S.P., Meier, L., Cha, D.H., and Loeb, G.M. 2024.&nbsp; Field testing of 2-pentylfuran as a behavioral control tool for spotted-wing drosophila in raspberries.&nbsp; Journal of Applied Entomology, DOI.org/10.1111/.</p><br /> <p>Gariepy, T.D., Abram, P.K., Adams, C., Beal, D., Berrs, E., Beetle, J., Biddinger, D., Brind&rsquo;Amour, G., Bruni, A., Buffington, M. Burrack, H., Kaane, K.M., Demchak, K., Fanning, P., Gillett, A., Hamby, K., Hoelmer, K., Hogg, B., Isaacs, R. Johnson, B. Lee, J.C., Levensen, H.K., Loeb, G., 2024. Widespread establishment of adventive populations of <em>Leptopilina japonica </em>(Hymenoptera, Figitidae) in north America and development of a multiplex pcr assay to identify key parasitoids of <em>Drosopohila suzukii </em>(Diptera, Drosophilidae). NeoBiota, 93: 63-90, doi: 10.3897/neobiota.93.121219.</p><br /> <p>Roh, G.H., Meier, L., Hesler, S., Zhu, J.J., Kendra, P., Roda, A., Loeb, G. Tay, J., Cha, D.H. 2023. A 2-component blend of coconut oil derived fatty acids as an oviposition deterrent against <em>Drosophila suzukii.&nbsp; </em>Journal of Economic Entomology, 116: 1671-1678, DOI.org/10.1093/jee/toad092.</p><br /> <p>Hubhachen, Z., Fanning, P.F., Abeli, P., Perkins, J., Isaacs, R., and Beaudry, R. 2023. Postharvest control of spotted-wing drosophila and blueberry maggot by low temperature conditions and fumigation with sulfur dioxide. Postharvest Biology and Technology.</p><br /> <p>Hanna McIntosh, Christelle Gu&eacute;dot, Amaya Atucha. 2023. Plastic mulches improve yield and reduce spotted-wing drosophila in primocane raspberry. Scientia Horticulturae, v320, 112203.</p><br /> <p>Pablo Urbaneja-Bernat, Robert Holdcraft, Johnattan Hern&aacute;ndez-Cumplido, Elena M. Rhodes, Oscar E. Liburd, Ashfaq A. Sial, Agenor Mafra-Neto, Cesar Rodriguez-Saona. 2022. Field, semi-field and greenhouse testing of HOOK SWD, a SPLAT-based attract-and-kill formulation to manage spotted-wing drosophila. Journal of Applied Entomology,&nbsp;https://doi.org/10.1111/jen.13073.</p><br /> <p>Cesar Rodriguez-Saona, Robert Holdcraft, Beth Ferguson. 2022. Control of Spotted-wing Drosophila on Highbush Blueberries. Arthropod Management Tests.</p><br /> <p>Isaacs, R., Van Timmeren, S., Gress, B. E., Zalom, F.G., Ganjisaffar, F., Hamby, K. A., Lewis, M. T., Liburd, O. E., Sarkar, N., Rodriguez-Saona, C., Holdcraft, R., Burrack, H. J., Toennisson, A., Drummond, F., Spaulding, N., Lanka, S., and Sial, A. 2022. Monitoring of spotted-wing drosophila (Diptera: Drosophilidae) resistance status using a RAPID method for assessing insecticide sensitivity across the United States. Journal of Economic Entomology</p><br /> <p>Serhan Mermer, Philip Fanning, Gabriella Tait, Ferdinand Pfab, Christopher Adams, Linda Brewer and Vaughn Walton. (2022) Spotted-wing Drosophila, Relative Rankings and Seasonal Strategies for Insecticide Use. OSU Extension bulletin EM 9360.</p><br /> <p>Carroll, J.E., Marshall, P., Mattoon, N., Weber, C., And Loeb, G. 2022. The impact of ruby-throated hummingbird, <em>Archilochs colubris</em>, predation on spotted-wing drosophila, <em>Drosophila suzukii</em>, in raspberry, <em>Rubus idaeus. </em>Crop Protection, doi.org/10.1016/j.cropro.2022.106116.</p><br /> <p>Schwanitz, T.W., Polashock, J.J., Stockton, D.G., Rodriguez-Saona, C., Sotomayor, D., Loeb, G., and Hawkings, C. 2022. Molecular and behavioral studies reveal differences in olfaction between winter and summer morphs of <em>Drosophila suzukii.</em>&nbsp; PeerJ. doi.org/10.7717/peerj.13825.&nbsp;</p><br /> <p>Jarrett, B.J., Linder, S., Fanning, P.D., Isaacs, R. and Szűcs, M., (2022). Experimental adaptation of native parasitoids to the invasive insect pest, <em>Drosophila suzukii</em>. Biological Control, p.104843.</p><br /> <p>Stockton, D., and Loeb, G.&nbsp; 2022. Diet hierarchies guide temporal-spatial variation in <em>Drosophila suzukii </em>resource use.&nbsp; Frontiers in Ecology and Evolution, DOI: 10.3389/fevo.2021.816557. Isaacs, R., Van Timmeren, S., Gress, B. E., Zalom, F.G., Ganjisaffar, F., Hamby, K. A., Lewis, M. T., Liburd, O. E., Sarkar, N., Rodriguez-Saona, C., Holdcraft, R., Burrack, H. J., Toennisson, A., Drummond, F., Spaulding, N., Lanka, S., and Sial, A. 2022 Monitoring of spotted-wing drosophila (Diptera: Drosophilidae) resistance status using a RAPID method for assessing insecticide sensitivity across the United States. Journal of Economic Entomology https://doi.org/10.1093/jee/toac021.</p><br /> <p>Tait, G., Mermer, S., Stockton, D. Lee, J., Avosani, S., Abrieux, A., Anfora, G., Beers, E., Biondi, A., Burrack, H., Cha, D., Chiu, J., Choi, M., Cloonan, K., Crava, C., Daane, K., Dalton, D., Diepenbrock, L., Fanning, P., Ganjisaffar, F., Gomez, M., Gut, L., Grassi, A., Hamby, K., Hoelmer, K., Ioriatti, C., Issacs, R., Klick, J.,Kraft, L,, Loeb, G., Rossi-Stacconi, M., Nieri, R., Pfab, F., Puppato, S., Rendon, D., Renkema, J., Rodriguez-Saona, C., Rogers, M., Sassu, F., Schoneberg, T., Scott, M., Seagraves, M., Sial, A., Van Timmeren, S., Wallingford, A., Wang, X. Yeh, D., Zalom, F. and Walton, V. 2021.&nbsp; <em>Drosophila suzukii </em>(Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program.&nbsp; Journal of Economic Entomology, doi.org/10.1093/jee/toab158.</p><br /> <p>Lewald, K., Abrieux, A., Wilson, D., Lee, Y., Andreazza, F., Beers, E., Burrack, H., Daane, K., Diepenbrock, L., Drummond, F., Fanning, P., Gaffney, M., Hesler, S., Ioriatti, C., Isaacs, R., Little, B., Loeb, G., Rendon, d., Sial, A., Stockton, D., Van Timmeren, S., Walton, V., Wang, X., Zalom, F., and Chiu, J. 2021. Population structure of <em>Drosophila suzukii </em>and signals of multiple invasions to the continental US. G3, Vol 11, Number 12, doi.org/10.1093/g3journal/jkab343.</p><br /> <p>Stockton, D.G., Cha, D.H., and Loeb, G.M. 2021. Does habituation affect the efficacy of semiochemical ovisposition repellents developed against <em>Drosophila suzukii?&nbsp; </em>Environmental Entomologist 50 (6), 1322-1321, doi.org/10.1093/ee/nvab099.</p><br /> <p>Fanning, P, Lanka, S., Mermer, S., Collins, J., Van Timmeran, S, Andrews, H., Hesler, S., Loeb, G., Drummond, F., Wiman, N., Walton, V., Sial, A., Isaacs, R. 2021. Field and laboratory testing of feeding stimulants to enhance insecticide efficacy against spotted-wing drosophila, <em>Drosophila suzukii</em> (Matsumura). Journal of Economic Entomology, 114: 1638-1646, doi.org/10.1093/jee/toab084.</p><br /> <p>Stockton, D. G., and Loeb, G. 2021. Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing Drosophila winter morphotypes.&nbsp; Journal of Insect Physiology, 131:104246, doi.org/10.1016/j.jinsphys.2021/104246.</p><br /> <p>Bing, X., Winkler, J., Gerlach, J., Loeb, G., and Buchon, N. 2021. Identification of natural pathogens from wild <em>Drosophila suzukii</em>.&nbsp; Pest Management Science, Vol 77, Issue 4, 1594-1606, doi.org/10.1002/ps.6235 Hubhachen, Z., Fanning, P.F., Abeli, P., Perkins, J., Isaacs, R., and Beaudry, R. (2023). Postharvest control of spotted-wing drosophila and blueberry maggot by low temperature conditions and fumigation with sulfur dioxide. Postharvest Biology and Technology.</p><br /> <p>Lewald, K., Abrieux, A., Wilson, D., Lee, Y., Conner, W., Andreazza, F., Beers, E., Burrack, H., Daane, K., Diepenbrock, L., Drummond, F., Fanning, P., Gaffney, M., Hesler, S., Ioriatti, C., Isaacs, C., Little, B., Loeb, G., Miller, B., Nava, D., Rendon, D., Sial, A., Da Silva, C., Stockton, D., Van Timmeren, S., Wallingford, A., Walton, V., Wang, X., Zhao, B., Zalom, B., Chiu, J. (2021) Population genomics of <em>Drosophila suzukii</em> reveal longitudinal population structure and signals of migrations in and out of the continental United States. G3.</p><br /> <p>Van Timmeren, S., Davis, A.R., and Isaacs, R. 2021. Optimization of a larval sampling method for monitoring Drosophila suzukii (Diptera: Drosophilidae) in blueberries. Journal of Economic Entomology. 114: 1690&ndash;1700. doi: 10.1093/jee/toab096.</p><br /> <p>Mermer, S., Pfab, F., Tait, G., Isaacs, R., Fanning, P.D., Van Timmeren, S., Loeb, G.M., Hesler, S.P., Sial, A.A.,&nbsp;Hunter, J.H., Bal, H.K., Drummond, F., Ballman, E., Collins, J., Xue, L., Jiang, D., and Walton, V.M. 2021. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. Journal of Pest Science. 94: 743&ndash;755. doi:10.1007/s10340-020-01292-w.</p>

Impact Statements

  1. There are currently 103,000 acres of blueberries (USDA National Ag Statistics NJ field office) and 84,500 acres of cherry (Northwest Hort Council) across the US, withholding a single spray across all these acres would represent over 7 million dollars in savings to these two industries. In response to the group’s biocontrol efforts, growers have reported that they have applied less ‘insurance sprays’ to protect fruit against SWD. We expect the classical biological control program will replace 1-2 sprays against SWD for blueberry and cherry growers across the country.
  2. Resistance monitoring methods have been tested by a team working across the United States (Isaacs et al. 2022). This RAPID method provides a relatively simple approach for standardized testing of whether SWD populations are resistant or susceptible. Use of this across eight states revealed variable levels of resistance, with some California populations having resistance to spinosad and the rest of the country showing susceptible populations.
  3. Classical biological control is underway in several states including Maine, Michigan, Pennsylvania, Washington, Oregon, and California.
Back to top
Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.