WERA97: Diseases of Cereals

(Multistate Research Coordinating Committee and Information Exchange Group)

Status: Active

WERA97: Diseases of Cereals

Duration: 10/01/2021 to 09/30/2026

Administrative Advisor(s):


NIFA Reps:


Non-Technical Summary

Statement of Issues and Justification

The cereal grains, particularly wheat and barley, constitute major cash crops throughout the western region of the United States. The types of cereal grains produced are diverse, including soft white winter, soft white spring, club, hard red winter, hard red spring, and durum wheat classes; 2-row and 6-row winter and spring feed, food (high seed concentration of β-glucan), hay, and malting barley types. Areas of production for these diverse crops overlap throughout the western region, and production occurs in both high and low rainfall areas, with or without irrigation, conventional and organic production, and under a wide-range of other production inputs (level of fertilization and degree of weed, insect, and disease control inputs). Overall, western cereal production is geared for the bulk commodity and specialized niche domestic markets as well as for export. In these markets, profit margins are slim and to remain competitive, cereal producers desperately seek assistance to reduce operating costs and minimize disease losses. To maintain profitability in a diverse and changing disease environment requires constant surveillance and rapid responses to emergent disease problems.


By providing a regional awareness of emerging diseases and the methods successfully deployed to manage them, WERA-97 has proven instrumental in the disease management success of the western region. Over the last 20 years, several important cereal diseases have emerged in the western United States that required timely responses. These include but are not limited to Fusarium head blight (FHB), stripe and leaf rusts, and root lesion nematodes. In 2004, Fusarium head blight first spread from the corn-belt states and Northern Great Plains into Inter-mountain regions of the Western U.S., causing millions of dollars in lost production. Spreading into new areas, affected producers experienced mycotoxin levels (deoxynivalenol, DON) in their grain in excess of US tolerances, presenting them with catastrophic losses. Preventing FHB related losses in the future has only been possible through the rapid local adaption of head blight control measures previously developed in other wheat producing states. In this fashion, WERA-97 enabled local specialist to rapidly introduce FHB resistant wheat cultivars with acceptable local performance, to locally validated FHB disease models for better risk management among affected growers, and to locally adapt agronomic practices and fungicide treatments that have proven efficacy in reducing FHB infection and mycotoxin accumulation in grain. Addressing FHB is an ongoing process to which WERA-97 will continues to play a major role. Similar to FHB, WERA-97 has played and continues to play a critical role in the management of stripe and leaf rusts across the western region. Research has shown that new races of stripe and leaf rust annually migrate northward from the Gulf states into central and northwestern Pacific regions and from there eastward into the Eastern Rockies and Northern Plains. With ever changing races and virulence profiles, maintaining effective varietal resistance to current populations of these pathogens is critical to their successful management. When mismatches occur between deployed varietal resistances and pathogen populations, rust epidemics explode on the scene resulting in millions of bushels of lost production and tens of millions of dollars in additional input costs. In addressing this threat, WERA-97 has played and continues to play a critical role. WERA-97 members form a sampling network supplying Dr Xianming Chen (WSU, Pullman) with rust isolates from across the western USA. Dr. Chen’s program tests virulence profiles of these isolates and uses representative races to screen germplasm and monitor variety effectiveness against these diseases. Dr. Chen’s results are then communicated across the WERA-97 networks in emails as well as through more extensive reporting at the annual WERA-97 meeting. Sometimes WERA-97 has been at the forefront of educating participants about a hidden danger in small grain production. For instance, in 2005 WERA-97 provided many members with their first discussions on root lesion nematodes and their potential impact on wheat production. Since then, the negative impact of these microscopic worms on wheat production has been recognized in almost all of the wheat growing regions of the United States. While several breeding programs are currently working with WERA-97 members towards development of nematode resistant wheat, WERA-97 has also been instrumental in identifying rotations that decreased this pest’s impact in the short term for our growers. In each instance, whether its rust, scab, or worm, by enhancing cross communication among pathologists, breeders and stakeholders, WERA-97 has been instrumental in effectively coordinating our disease management responses for a more cost-effective cropping system.


In the future, new challenges will await WERA-97 and its participants. Today, fungicide-resistant leafspot pathogens are migrating across the region including resistant individuals of Septoria, Stagonospora, and Pyrenophora species. In the near future, these fungicide resistant populations will demand WERA-97 participants to collectively develop more ecologically based solutions to these persistent and troublesome pests. In addition, the region continues to address increases in diseases brought about by the adoption of no-till practices including increases in Fusarium crown rot, Cephalosporium stripe, and the aforementioned leafspot pathogens. Developing methods for decreasing the inoculum load for these pests in this new climate may require developing new understandings of microbial community dynamics and how these communities may be exploited to limit pathogen loads. As the warming trend mounts across the USA, milder winters and warmer summers are leading to range expansion for many warm weather diseases including viral diseases such as barley yellow dwarf, wheat streak mosaic and soilborne mosaic diseases. As losses due to these diseases expand northwards into unchartered territories, WERA-97 will be there communicating and coordinating among our members so that rapid responses will be there for our growers.

Objectives

  1. Research new developments in floral and foliar disease dynamics, particularly with regards to fungicide resistance and the ecological and genetic approaches to addressing these expanding threats to cereal production
  2. Research the effects of climate change on disease distributions, particularly viral diseases, identify factors associated with regional expansion, and adapted management strategies to local conditions.
  3. Research the intersection of soil and residue borne pathogens and soil Health.
    Comments: Understand how production and disease management practices affect microbial community ecology and the long-term consequences of these effects on disease management.
  4. Identify and characterize new disease resistances from exotic plant materials, advance disease resistance genes into locally adapted cultivars and breeding materials. Determine mechanisms involved in expression of disease resistance.
  5. Develop educational and extension materials at state, regional and national levels.
    Comments: Translate disparate research into cogent messaging for growers and other stakeholder groups thereby turning research investment into economic benefits. WERA-97 will provide for direct informal instruction of graduate students in plant pathology and will coordinate the development of educational materials for undergraduate programs.

Procedures and Activities

A web-based meeting was conducted among members on June 18th 2020 to discuss how to increase the effectiveness and membership in WERA 97. The outcome was a decision to expand the services rendered by the committee to its participating members and eliminate barriers to expanded participation. The expanded services include expanded participation by graduate students in WERA-97 activities, increased coordination of research and educational endeavors among WERA-97 members and an introduced advocacy for issues we face in disease management at local, state, and national levels. In addition, the committee will seek to expand participation through greater flexibility in meeting dates to better accommodate differing climates across the region and through better advertising of WERA-97 activities in professional forums.


Activities of WERA-97 will be primarily coordinated through an annual meeting hosted on a rotating basis among the WERA-97 membership. These meetings and subtending presentations will be conducted in a semiformal/informal manner to enhance open discussion. Each meeting will have a field tour organized by the host and a portion of the meeting dedicated informal/semiformal presentations followed by a business meeting. The presentations portion of the meeting will be organized by WERA-97 objectives and will include sessions for 1) member presentations on their research, proposed coordinated research and/or proposed coordinated educational projects, 2) student presentations of proposed and current research, and 3) state disease reports. The presentations portion will conclude with an invited presentation by a local specialist. Following presentations, time will be dedicated for people of common interest to discuss and coordinate proposed research and educational foci. The business meeting will be chaired by the host. Business will include 1) the selection of future hosts and meeting dates, 2) the identification of critical issues in small grain pathology, and 3) the organization of regional and national educational initiatives. Critical issues and state reports will be communicated to the appropriate bodies within the regional and national bodies of APS Society as well as to appropriate government representatives within state departments of agriculture and the USDA. Annual meetings will be advertised in the APS news, and through invitations to sister organizations and local commodity groups.


WERA-97 has a proven record of performance in addressing dynamic disease systems in United States. In the past:


 



  • WERA-97 members are regularly invited to and participate in the NCERA-184 meetings, including in 2018, where invited speaker Dr. Pooria Ensafi discussed the expanding and at times severe losses associated with the cereal cyst nematode (CCN) in Florida. This disease is widely unrecognized as the causal agent of poor performance in dryland production areas throughout the Intermountain West.

  • WERA-97 acted as a forum for coordination of research activities within the western region on both wheat stripe rust (WSR) and barley stripe rust (BSR). Members of the Committee were involved in the initial detection of BSR and later developed methods for monitoring its progress. Now that stripe rust is firmly established in the region, efforts on breeding for resistance are proving fruitful and continued screening for new sources of resistance is being coordinated by several members of the Committee. BSR became surprisingly widespread in malt barley production in 2019, alerting the industry that two-rowed barley varieties could be as susceptible as the six-rowed lines that are now at very limited production. Expanded efforts on WSR following the epidemics of 2000-2004 and the rapid development and establishment of new races has stimulated increased efforts at integrating control of WSR, the development of a National Research Initiative for WSR, and an expanded screening program to identify new sources of both seedling and adult plant resistance for the Western Region.

  • WERA-97 members coordinated a head blight “Summit”, inviting members of the barley community (Idaho Barley Commission, Montana Grain Growers Association, ABInBev, MillerCoors, Great Western Malting, Malt Europe, American Malting Barley Association and National Barley Growers Association) to increase awareness of FHB risk in association with increasing temperatures due to climate change and increased production of corn.

  • WERA-97 educated its own members and other invited academic and industry participants in joint meetings with various groups, such as the Western Wheat Workers, NCERA-184, and private breeding companies including Syngenta, DOW, Bayer Crop Sciences, and Limagrain Cereal Seeds. Participants learned about the epidemiology, impact and management of numerous diseases including Fusarium head blight, wheat streak mosaic, Fusarium crown rot, wheat stripe rust, and root lesion nematode. Much of this information is of tremendous immediate importance to growers. For instance, participants learned about the toxin dynamics related to Fusarium head blight, effective fungicides to reduce both disease and vomitoxin (deoxynivalenol) accumulation, and how inoculum loads and harvest timing affect levels of toxin present in the grain.

  • WERA-97 keeps participants informed on changes in resources and available personnel to address disease issues, and enhances understanding and communication between private and public sector services. This information enables more efficient resource allocation and ensures critical issues continue to be addressed.

  •  



  • WERA-97 members are playing a major role in the production of the 3rd edition of the Compendium of Barley Diseases.

Expected Outcomes and Impacts

  • By conducting these activities, WERA-97 expects to: Comments: 1. Provide for the coordination of cooperative efforts in cereal pathology research, extension, and educational programs for the western United States. This coordination will enhance research and outreach efficiency through elimination of duplication in research and outreach efforts, through the matching of needs to the most appropriate expertise and skillset available and through the leveraging of regional resources to address challenges that outstrip the resources and capabilities of individual programs. 2. Enhance research among committee members and their respective states through the exchange of biological materials, training of members in new research methodologies, and a collective troubleshooting of research proposals and experimental designs. 3. Prioritize resource allocation among critical cereal disease issues through coordinated evaluation of current and emerging disease issues, and the status of the science and technology needed to address disease related losses. Critical issues will be shared with local, regional, and national agricultural agencies and organizations. 4. Educate members, graduate students and grower stakeholders. Formal and informal educational vehicles will be established to fill knowledge gaps among members of all groups served. These will include workshops and training sessions, as well as coordinated development of extension vehicles including slides, videos, and publications.

Projected Participation

View Appendix E: Participation

Educational Plan

WERA-97 will deploy a multi-tiered educational program that will serve graduate students, WERA-97 members, and external groups including grower stakeholders and sister organizations. Member educational activities will primarily focus on the annual meeting including member presentations, disease workshops and field tours conducted by meeting hosts. Graduate instruction will be enhanced by WERA-97 through the same vehicles as those for members but with time specifically dedicated to graduate student research and graduate student enrichment. For grower stakeholders, local commodity groups, and sister organizations, participation in annual meetings will be solicited providing external participants with all of the educational benefits the meetings entail. In addition, WERA-97 will coordinate collaboration on communication vehicles directed towards these groups during the annual meeting with the goal of developing outreach and extension materials of greater depth and breadth of applicability. Almost all WERA-97 members have extension, outreach, or educational appointments. Through them, information will be provided to growers and agricultural students on emerging and/or new disease problems in their areas.

Organization/Governance

 


The Chair is elected at the annual meeting and serves the following year. This person serves as a liaison with the Administrative Advisor to see that all required annual reports are submitted to the office of the Executive Director, Western Association of Agricultural Experiment Station Directors. The Chair directs the activities of the Committee and makes sure that the objectives of the committee are fulfilled. The following year’s meeting of the committee usually is at the home base of the Chair or in coordination with the Western Wheat Workers meeting, whose Chair may coordinate local arrangements. Meetings jointly attended by the members of WERA-97 and the wheat and barley breeding community enhance discussions of emerging issues. Minutes of the meeting, state reports, and information about the activities of WERA-97 are posted on the Committee’s website (http://plantsciences.montana.edu/wera97/).

Literature Cited

Peer Reviewed Publications (2016– 2020):


Agindotan, B., J. Fenoglio, M. Najib, K. McPhee, and M. Burrows. 2019. First report of Bean leafroll virus in chickpea, lentil, and dry pea in Montana. Plant Disease. DOI: 10.1094/PDIS-10-18-1873-PDN.


Akin, B., Chen, X. M., Morgunov, A., Zencirci, N., Wan, A. M. 2016. High-temperature adult-plant (HTAP) stripe rust (Puccinia striiformis f. sp. tritici) resistance in facultative winter wheat. Crop & Pasture Science 67(10):1064-1074.  http://dx.doi.org/10.1071/CP16073.


Albrecht, T., White, S., Layton, M., Stenglein, M., Haley, S., and Nachappa, P. Ecology and epidemiology of wheat curl mite and mite-transmissible viruses in Colorado and insights into the wheat virome. BioRxiv 2020.08.10.244806; doi: https://doi.org/10.1101/2020.08.10.244806.


Al-Kafaji, R.T., Gunnink-Troth, E.E., Lambert, K.N., Johnston, J.A., Dyer, A.T. 2019. Barley pathotypes detected among populations of Pratylenchus neglectus collected from Montana. Plant Disease 103:3259-3264.


Baldwin, T.T., Arcibal, S.M., Klos, K., Bregitzer, P., Marshall, J.M. 2019. Deletion of the benzoxazinoid detoxification gene NAT1 in Fusarium graminearum reduces deoxynivalenol in spring wheat. Accepted 03/19 PloS 14(7): e0214230.  https://doi.org/10.1371/journal.pone.0214230.


Barrantes-Infante, B.L., B.K. Schroeder, S.A. Subbotin, and T.D. Murray. 2018. Afrina sporoboliae n. sp. (Nematoda: Anguinidae), a new seed-gall nematode associated with Sporobolus cryptandrus from West Central Idaho.  Phytopathology 108:768-779. doi.org/10.1094/PHYTO-12-17-0395-R.


Barrantes-Infante, B.L., B.K. Schroeder, and T.D. Murray. 2016. Distribution and genetic diversity of Anguina spp. in the Pacific Northwest, United States. SON/ONTA meeting, July 17-21, 2016.


Belcher, A., Cuesta-Marcos, A., Smith, K. P., Mundt, C. C., Chen, X. M., and Hayes, P. M.  2018. TCAP FAC-WIN6 elite barley GWAS panel QTL. I. Barley stripe rust resistance QTL in facultative and winter six-rowed malt barley breeding programs identified via GWAS. Crop Sci. 58(1):103-119. https://doi:10.2135/cropsci2017.03.0206


Berg, J. E., Eberly, J. O., Lamb, P. F., Miller, J. H., Chen, C., Kephart, K. D., Pradhan, G. P., Stougaard, R. N., Nash, D. L., Holen, D. L., Cook, J. P., Gale, S., Jin, Y., Kolmer, J. A., Chen, X., Bai, G., and Bruckner, P. L. 2019. Registration of ‘FourOsix’ hard red winter wheat. Journal of Plant Registrations 13(3):383-386. https://doi:10.3198/jpr2018.12.0081crc.



Berg, J. E., Hofer, P., Kephart, K. D., Stougaard, R. N., Lamb, P. F., Miller, J. H., Wichman, D. M., Eckhoff, J. L., Eberle, C. A., Nash, D. L., Holen, D. L., Cook, J. P., Gale, S., Jin, Y., Chen, X., Moore, M. D., Kennedy, K. A., and Bruckner, P. L. 2018. Registration of ‘Spur’ hard red winter wheat. Journal of Plant Registrations 12(2):228-231. https://doi:10.3198/jpr2017.10.0076crc.


Berg, J. E., Kephart, K. D., Lamb, P. F., Davis, E. S., Eberly, J. O., Miller, J. H., Chen, C., Pradhan, G. P., Torrion, J. A., Ramsfield, R., Nash, D. L., Holen, D. L., Cook, J. P., Gale, S., Jin, Y., Chen, X., and Bruckner, P. L. 2020. Registration of ‘StandClear CLP’ hard red winter wheat. Journal of Plant Registrations 14(3):365-370. https://doi.10.1002/plr2.20052.


Berg, J. E., Lamb, P. F., Miller, J. H., Wichman, D. M., Kephart, K. D., Stougaard, R. N., Pradhan, G. P., Nash, D. L., Grey, W. E., Gettel, D., Jin, Y., Kolmer, J. A., Chen, X. M., Bai, G., Murray, T. D., and Bruckner, P. L. 2016. Registration of ‘Northern’ wheat.  Journal of Plant Registrations 10(2):135-138. https://doi:10.3198/jpr2015.10.0062crc


Berg, J. E., Stougaard, R. N., Kephart, K. D., Chen, C., Eberly, J. O., Torrion, J. A., Lamb, P. F., Miller, J. H., Pradhan, G. P., Ramsfield, R., Nash, D. L., Holen, D. L., Cook, J. P., Gale, S., Jin, Y., Kolmer, J. A., Chen, X., Bai, G., and Bruckner, P. L. 2020. Registration of ‘Flathead’ hard red winter wheat. Journal of Plant Registrations 14(3):418-423. https://doi.org/10.1002/plr2.20080.


Bregitzer, P., Hu, G., Marshall, J.M., and Rayboy, V. 2017. Registration of 'Sawtooth' low-phytate, hulless, spring barley. PR-2016-09-0049-CRC. Journal of Plant Registrations 2017 Vol. 11 No. 2:81-84. doi:10.3198/jpr2016.09.0049crc.


Bregitzer, P., Hu, G., Marshall, J.M., and Rayboy, V. 2016. Registration of ‘Harriman’ low-phytate, hulled spring barley. J. of Plant Registrations. 10:105-108. doi:10.3198/jpr2015.09.0050crc.


Bruckner, P. L., Berg, J. E., Lamb, P. F., Carr, P., Wichman, D. M., Miller, J. H., Meccage, E., Miller, Z., Chen, C., Kephart, K. D., Eberly, J. O., Pradhan, G. P., Nash, D. L., Holen, D. L., Cook, J. P., Gale, S., Jin, Y., and Chen, X. M. 2019. Registration of ‘Ray’ hard red winter forage wheat. Journal of Plant Registrations 13(3):392-395. https://doi:10.3198/jpr2019.03.0012crc.


Bruckner, P. L., Berg, J. E., Lamb, P. F., Kephart, K. D., Eberly, J. O., Miller, J. H., Chen, C., Torrion, J. A., Pradhan, G. P., Ramsfield, R., Nash, D. L., Holen, D. L., Cook, J. P., Gale, S., Jin, Y., Kolmer, J., Chen, X., and Bai, G. 2020. Registration of ‘Bobcat’ hard red winter wheat. Journal of Plant Registrations 14(3):371-376.  https://doi:10.1002/plr2.20057.


Bruckner, P., Berg, J., Kephart, K., Stougaard, R., Pradhan, G., Lamb, P., Miller, J., Briar, S., Chen, C. C., Nash, D. Holen, D., Cook, J., Gale, S., Jin, Y., Kolmer, J., Chen, X. M., Bai, G. H., and Murray, T. 2017. Registration of ‘Loma’ hard red winter wheat. Journal of Plant Registrations 11(3):281-284. https://doi:10.3198/jpr2016.12.0072crc.


Bruckner, P.L., J.E. Berg, K.D. Kephart, R.N. Stougaard, G.P. Pradhan, P.F. Lamb, J.H. Miller, S.S. Briar, C. Chen, D.L. Nash, D.L. Holen, J.P. Cook, S. Gale, Y. Jin, J.A. Kolmer, X. Chen, G. Bai, and T.D. Murray. 2017. Registration of ‘Loma’ Hard Red Winter Wheat. J. Plant Registrations 11:281-284. doi.org:10.3198/jpr2016.12.0072crc.


Bulli, P., Zhang, J. L., Chao, S. M., Chen, X. M., and Pumphrey, M. 2016. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3: Genes, Genomes and Genetics 6:2237-2253. https://doi:10.1534/g3.116.028407.


Burrows, M., C. Thomas, N. McRoberts, R. Bostock, L. Coop, J. Stack. 2016. Coordination of diagnostic efforts in the Great Plains: wheat virus survey and modelling of disease onset. Plant Dis. 100: 1037-1045. Feature. DOI: 10.1094/PDIS-04-15-0467-FE.


Campbell, K.G., A.H. Carter, S.S. Jones, X.M. Chen, P. DeMacon, R. Higginbotham, D. Engle, S.O. Guy, C.C. Mundt, T.D. Murray, C.F. Morris, and D. See. 2017. Registration of “Pritchett” Soft White Winter Club Wheat. J. Plant Registrations 11:152-158. doi.org:10.3198/jpr2016.04.0018crc.


Carter, A.H., R.E. Allan, K. Balow, A. Burke, X.M. Chen, D. Engle, K.A. Garland-Campbell, K. Hagemeyer, C. Morris, T. Murray, T. Paulitz, and G. Shelton. 2020. How ’Madsen’ has shaped Pacific Northwest wheat and beyond. J. Plant Registrations 14:223-233. https://doi.org/10.1002/plr2.20049.


Carter, A.H., K.A. Balow, G.B. Shelton, A.B. Burke, K.E. Hagemeyer, A. Stowe, J. Worapong, R.W. Higginbotham, X.M. Chen, D.A. Engle, T.D. Murray, and C.F. Morris. 2020. Registration of ‘Stingray CL+’ Soft White Winter Wheat. J. Plant Registrations https://doi.org/10.1002/plr2.20109.


Carter, A. H., K. A. Balow, G. B. Shelton, A. B. Burke, K. Hagemeyer, T. Worapong, R. W. Higginbotham, X. M. Chen, D. A. Engle, T. D. Murray, and C. F. Morris. 2020. Registration of ‘Purl’ Soft White Winter Wheat. J. Plant Registrations 14:398-405. https://doi.org/10.1002/plr2.20069.


Carter, A.H., S.S. Jones, K.A. Balow, G.B. Shelton, A.B. Burke, R.W. Higginbotham, X.M. Chen, D.A. Engle, T.D. Murray, and C.F. Morris. 2017. Registration of ‘Jasper” soft white winter wheat. J. Plant Registrations 11:263-268. doi.org:10.3198/jpr2016.09.0051crc.


Carter, A.H., K.A. Balow, G.B. Shelton, A.B. Burke, K.E. Hagemeyer, A. Stowe, J. Worapong, R.W. Higginbotham, X.M. Chen, D.A. Engle, T.D. Murray, and C.F. Morris. 2020. Registration of ‘Devote’ Soft White Winter Wheat. J. Plant Registrations 2020:1-11. https://doi.org/10.1002/plr2.20079.


Carter, A.H., K.A. Balow, G.B. Shelton, A.B. Burke, K.E. Hagemeyer, A. Stowe, J. Worapong, R.W. Higginbotham, X.M. Chen, D.A. Engle, T.D. Murray, and C.F. Morris. 2020. Registration of ‘Scorpio’ Hard Red Winter Wheat. J. Plant Registrations 2020:1-8.  https://doi.org/10.1002/plr2.20076.


Carter, A. H., Jones, S. S., Lyon, S. R., Balow, K. A., Shelton, G. B., Burke, A., Higginbotham, R. W., Schillinger, W. F., Chen, X. M., Engle, D. A., and Morris, C. F. 2017. Registration of ‘Sequoia’ hard red winter wheat. Journal of Plant Registrations 11(3):269-274. https://doi:10.3198/jpr2016.09.0052crc.


Carter, A. H., Kidwell, K. K., Balow, K. A., Burke, A., Shelton, G. B., Higginbotham, R. W., DeMacon, V., Lewien, M. J., Chen, X. M., Engle, D. A. and Morris, C. F.  2017. Registration of ‘Earl’ wheat. Journal of Plant Registrations 11(3):275-280. https://doi:10.3198/jpr2016.09.0054crc.


Chen, J., Wheeler, J., O’Brien, K., Zhao, W., Klassen, N., Zhang, J., Bowman, B., Wang, Y., Jackson, C., Marshall, J.M., Chen, X.M.  2015. Registration of ‘UI Platinum’ Hard White Spring Wheat. J. Plant Registration 10:36-40. DOI:10.3198/jpr2015.06.0037cr.


Chen, J., Wheeler, J., Klassen, N., Zhao, W., O’Brien, K., Jackson, C., Marshall, J. M., Schroeder, K., and Chen, X. M. 2020. Release of ‘UI Bronze Jade’ hard white winter wheat. Journal of Plant Registrations 14(3):357-364. https://doi:10.1002/plr2.20029Chen, J., Wheeler, J., Zhao, W., Klassen, N., O’Brien, K., Marshall, J.M., Jackson, C., Schroeder, K., Higginbotham, R., and Chen, X.  2017.  Registration of ‘UI Sparrow’ wheat.  Journal of Plant Registrations. doi:10.3198/jpr2017.04.0021crc.


Chen, J., Wheeler, J., O’Brien, K., Zhao, W., Klassen, N., Zhang, J., Bowman, B., Jackson, Ch., Marshall, J. M., and Chen, X. M. 2016. Release of ‘UI Platinum’ hard white spring wheat.  Journal of Plant Registrations 10(1):36-40. https://doi:10.3198/jpr2015.06.0037crc.


Chen, X. M. 2017. Stripe rust epidemiology. Pages 283-352 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht.  https://doi:10.1007/978-94-024-1111-9.


Chen, X. M. 2020. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Security 12(2):239-251. https://doi.org/10.1007/s12571-020-01016-z.


Chen, X. M., and Kang, Z. S. 2017. Integrated control of stripe rust. Pages 559-599 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht. https://doi:10.1007/978-94-024-1111-9.


Chen, X. M., and Kang, Z. S. 2017. Introduction: history of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust. Pages 1-33 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht.  https://doi:10.1007/978-94-024-1111-9.


Chen, X. M., and Kang, Z. S. 2017. Stripe rust research and control: conclusions and perspectives. Pages 601-630 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht. https://doi:10.1007/978-94-024-1111-9.



Cheng, P., Chen, X. M., and See, D. 2016. Grass hosts harbor more diverse isolates of Puccinia striiformis than cereal crops. Phytopathology 106(4):362-371. http://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-07-15-0155-R.


Cheng, Y. K., Li, J., Yao, F. J., Long, L., Wang, Y. Q., Wu, Y., Li, J., Ye, X. L., Wang, J. R., Jiang, Q. T., Kang, H. Y., Li, W., Qi, P. F., Liu, Y. X., Deng, M., Ma, J., Jiang, Y. F., Chen, X. M., Zheng, Y. L., Wei, Y. M., and Chen, G. Y. 2019. Dissection of loci conferring resistance to stripe rust at the adult-plant stage of Chinese wheat landraces in the middle and lower reaches of the Yangtze River via genome-wide association study. Plant Science 287(2019):110204.  https://doi.org/10.1016/j.plantsci.2019.110204.


Cobo, N., Plfüger, L., Chen, X. M., and Dubcovsky, J. 2018. Mapping QTL for resistance to new virulent races of wheat stripe rust from two Argentinean wheat varieties. Crop Science 58(6):2470-2483. https://doi:10.2135/cropsci2018.04.0286 Cui, L., D. Qiu, L. Sun, Y. Sun, Y. Ren, H. Zhang, J. Li, J. Zou, P. Wu, H. Liu, L. Yang, Y. Zhou, Y. Wang, Y. Lv, Z. Liu, T.D. Murray, and H. Li. 2019. Resistance to Heterodera filipjevi and H. avenae in winter wheat is conferred by different QTL. Phytopathology 110:472-482. doi.org/10.1094/PHYTO-04-19-0135-R.


Cui, L., Y. Ren, T.D. Murray, W. Yan, Q. Guo, Y. Niu, Y. Sun, and H. Li. 2018. Development of perennial wheat through hybridization between wheat and wheatgrasses: A review. Engineering 4:507-513. doi.org/10.1016/j.eng.2018.07.003.


Cuomo, C. A., Bakkeren, G., Khalil, H. B., Panwar, V., Joly, D., Linning, R., Sakthikumar, S., Song, X., Adiconis, X., Fan, L., Goldberg, J. M., Levin, J. Z., Young, S., Zeng, Q. D., Anikster, Y., Bruce, M., Wang, M. N., Yin, C. T., McCallum, B., Szabo, L. J., Hulbert, S., Chen, X. M., and Fellers, J. P. 2017. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci.  3G: Genes, Genomes, Genomics 7(2):371-376. https://doi:10.1534/g3.116.032797


Davis II, E.W., J.F. Tabima, A.J. Weisberg, L.D. Lopes, M.S. Wiseman, M.S. Wiseman, T. Pupko, M.S. Belcher, A. J. Sechler, B.K. Schroeder, T.D. Murray, D.G. Luster, W.L. Schneider, E.E. Rogers, F. Andreote, N.J. Grünwald, M.L. Putnam, and J.H. Chang. 2018. Evolution of the U.S. Biological Select Agent, Rathayibacter toxicus. mBio 9(4):e01280-18. DOI:10.1128/mBio.01280-18.


Dong, Z. Z., Hegarty, J. W., Zhang, J. L., Zhang, W. J., Chao, S. M., Chen, X. M., Zhou, Y. H., Dubcovsky, J. 2017. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theoretical and Applied Genetics 130(10):2127-2137. https://doi:10.1007/s00122-017-2946-9.


Ehlert, K., Mangold, J., Menalled, F., Miller, Z., Dyer, A.T. 2019. Seeding, Herbicide, and Fungicide Impact on Perennial grass establishment in cheatgrass infested habitats. Ecol. Restor. 37:67-70.



Esvelt, K., K., Hayes, P., del Blanco, I. A., Chen, X. M., Filichkin, T. P., Helgerson, L., Fisk, S., and Bregitzer, P. 2020. Identification in two populations of QTL for field resistance to barley stripe rust derived from the two-rowed malting line 95SR316A. Crop Science 60(4):1844-1853. https://doi.org/10.1002/csc2.20154.


Farrakh, S., Wang, M. N., and Chen, X. M. 2018. Pathogenesis-related protein genes involved in race-specific all-stage resistance and non-race specific high-temperature adult-plant resistance to Puccinia striiformis f. sp. tritici in wheat. Journal of Integrative Agriculture 17(11):2478-2491.


Feng, J. Y., Wang, M. N., See, D. R., Chao, S. M., Zheng, Y. L., and Chen, X. M. 2018. Characterization of novel gene Yr79 and four additional QTL for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108(6):737-747. https://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-11-17-0375-R.


Friskop, A., S. Yellareddygary, N. Gudmestad, K. Fuller, M. Burrows. 2018. Low benefits from the from fungicide use in hard red wheat in the absence of disease. Plant Health Progress. 19:288-294. DOI:10.1094/PHP-06-18-0028-RS.


Froese, P.S., T.D. Murray, and A.H. Carter. 2016. Quantitative Cephalosporium stripe disease resistance mapped in the wheat genome. Crop Science 56:1586-1601.


Gargouri, S., V. Balmas, L. Burgess, T. Paulitz, I. Laraba, H. Kim, R.H. Proctor, M. Busman, F.C. Felker, T. Murray, and K. O”Donnell.  2020. A Tunisian endophyte of Macrochloa tenacissima (esparto or needle grass) is a novel species in the Fusarium redolens complex. Mycologia 112:792-807.  doi.org/10.1080/00275514.2020.1767493.


Gargouri, S., S. Beraies, M.S. Gharbi, T. Paulitz, T.D. Murray, and L.W. Burgess. 2017. Occurence of Sclerotinia stem rot of Fenugreek caused by Sclerotinia trifoliorum and S. Sclerotiorum in Tunisia. Eur. J. Plant Pathology 149:587-597. doi.org:10.1007/s10658-017-1208-7.


Gargouri, S., E. Khemir, A. Souissi, T.D. Murray, M. Fakhfakh, I. Achour, S. Chekali, M. Mlike, and T.C. Paulitz. 2020.  Survey of take-all (Gaeumannomyces graminis var. tritici) on cereals in Tunisia and impact of crop sequences. Crop Protection 135:105.189. doi.org/10.1016/j.cropro.2020.105189.


Garland Campbell, K., Carter, A. H., Jones, S. S., Chen, X. M., DeMacon. P., Higginbotham, R., Engle. D., Guy, S. O., Mundt, C. C., Murray, T. D., Morris, C. F., See, D. 2017. Registration of ‘Pritchett’ soft white winter club wheat. Journal of Plant Registrations 11:152–158. https://doi:10.3198/jpr2016.04.0018crc.


Gill, K.S., N. Kumar, A.H. Carter, H.S. Randhawa, C.F. Morris, B. Baik, R.W. Higginbotham, D.A. Engle, S.O. Guy, I.C. Burke, D. Lyon, T.D. Murray, and X.M. Chen. 2020. Registration of ‘Curiosity CL+’ Soft White Winter Wheat. J. Plant Registrations 14:377-387. https://doi.org/10.1002/plr2.20066.


Gill, K.S., N. Kumar, H.S. Randhawa, A.H. Carter, J. Yenish, C.F. Morris, B. Baik, R.W. Higginbotham, S.O. Guy, D.A. Engle, X.M. Chen, T.D. Murray, and D. Lyon. 2020. Registration of ‘Mela CL+’ Soft White Winter Wheat. J. Plant Registrations 14:144-152.  https://doi.org/10.1002/plr2.20006.


Gill, K.S., N. Kumar, H.S. Randhawa, K. Murphy, A.H. Carter, C.F. Morris, R.W. Higginbotham, D.A. Engle, S.O. Guy, D. Lyon, T.D. Murray, X.M. Chen, and W.F. Schillinger. 2020. Registration of ‘Resilience CL+’ Soft White Winter Wheat. J. Plant Registrations https://doi.org/10.1002/plr2.20118 [ONLINE 22 December 2020].


Godoy, J., Rynearson, S., Chen, X. M., and Pumphrey, M. 2018. Genome-wide association mapping of loci for resistance to stripe rust in North American elite spring wheat germplasm. Phytopathology 108(2):234-245. http://dx.doi.org/10.1094/PHYTO-06-17-0195-R.
.
Griffey, C., Malla, S., Brooks, W., Seago, J., Christopher, A., Thomason, W., Pitman, R., Markham, R., Vaughn, M., Dunaway, D., Beahm, M., Barrack, C. L., Rucker, E., Behl, H., Hardiman, T., Beahm, B., Browning, P., Schmale, D., McMaster, N., Custis, J. T., Gulick, S., Ashburn, S. B., Jones Jr. N., Baik, B. K., Bockelman, H., Marshall, D., Fountain, M., Brown-Guedira, G., Cowger, C., Cambron, S., Kolmer, J., Jin, Y., Chen, X. M., Garland-Campbell, K., and Sparry, E. 2020. Registration of ‘Hilliard’ wheat.  Journal of Plant Registrations 14(3):406-417. https://doi.org/10.1002/plr2.20073.


Gunnink-Troth, E.E., Johnston, J.A., Dyer, A.T., 2018.  Competition between Fusarium pseudograminearum and Cochliobolus sativus observed in field and greenhouse studies.  Phytopathology 108:215-222.


Hagerty, C. H., Anderson, N., Mundt, C. C. (2017). Temporal dynamics and spatial variation of azoxystrobin and propiconazole resistance in Zymoseptoria tritici: A hierarchical survey of commercial winter wheat fields in the Willamette Valley, Oregon. Phytopathology, 107(3): 345-352.


Hagerty, C. H., Graebner, R. C., Sackett, K. E., Mundt, C. C. (2017). Variable competitive effects of fungicide resistance in field experiments with a plant pathogenic fungus. Ecological Applications, 27(4): 1305–1316.


Hagerty, C.H. , Klein, A., Reardon, C., Kroese, D.R., Melle, C., Graber, K., Mundt, C.  (2020). Baseline and temporal changes in sensitivity of Zymoseptoria tritici isolates to benzovindiflupyr in Oregon, USA, and cross-sensitivity to other SDHI fungicides. Plant Disease. https://doi.org/10.1094/PDIS-10-19-2125-RE.


Hagerty, C. H., Mundt, C. C. (2016). Reduced virulence in azoxystrobin resistant Zymoseptoria tritici in greenhouse assays. Phytopathology, 106(8): 884-889.


Hagerty, C. H., Mundt, C. M. (2016). Temporal dynamics and spatial pattern of Zymoseptoria tritici fungicide resistance in the Willamette Valley, USA. Phytopathology, 107(3): 345-352.


Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Hudson-Arns, E. E., Seifert, S. A., Anderson, V. A., Bai, G. B., Chen, X. M., Bowden, R. L., Jin, Y., Kolmer, J. A., Chen, M. S., and Seabourn, B. W. 2018. Registration of ‘Avery’ hard red winter wheat. Journal of Plant Registrations 12(6):362-366. https://doi:10.3198/jpr2017.11.0080crc.


Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Hudson-Arns, E. E., Seifert, S. A., Anderson, V. A., Bai, G. H., Chen, X. M., Bowden, R. L., Jin, Y., Kolmer, J. A., Chen, M. S., and Seabourn, B. W. 2017. Registration of 'Sunshine' hard white winter wheat. Journal of Plant Registrations 11(3):289-294. https://doi:10.3198/jpr2016.12.0075crc.


Haley, S.D., Johnson, J.J., Peairs, F. B., Stromberger, J. A., Hudson-Arns, E. E., Seifert, S. A., Anderson, V. A., Rosenow, A. A., Bai, G. H., Chen, X. M., Bowden, R. L., Jin, Y., Kolmer, J. A., Chen, M-S., and Seabourn, B. W. 2018. Registration of ‘Langin’ hard red winter wheat. Journal of Plant Registrations 12(2):232-236. https://doi:10.3198/jpr2017.11.0082crc.


Hu, G., Evans, C.P., Satterfield, K., Ellberg, S., Marshall, J.M., Obert, D.E. 2016. Registration of ‘Kardia’, a Two-Rowed Spring Food Barley. J. of Plant Registrations. Vol. 10 No. 3, p. 213-216. doi:10.3198/jpr2015.12.0073crc.


Hu, G., Evans, C.P., Satterfield, K., Ellsberg, S., Marshall, J.M., Schroeder, K., Obert, D.E. 2019. Registration of ‘Goldenhart’, a Two-Rowed Spring Food Barley.  J. of Plant Registrations 13:119-122. doi:10.3198/jpr2018.10.0067crc.


Hu, G., D.E. Obert, D.E., Evans, C.P., Satterfield, K., Ellberg, S., Marshall, J.M., Budde, A., and Martens, C. 2014. Registration of ‘Merem’ Spring Malting Barley. J. of Plant Registrations 8:233-235.


Jaramillo-Mesa, H., Gannon, M., Holshbach, E., Zhang, J., Roberts, R., Buettner, M., Rakotondrafara, A.M.. 2018. The Triticum Mosaic Virus Internal Ribosome Entry Site Relies on a Picornavirus-Like YX-AUG Motif To Designate the Preferred Translation Initiation Site and To Likely Target the 18S rRNA. Journal of Virology Feb 2019, 93 (5) e01705-18; DOI: 10.1128/JVI.01705-18.


Johnson, J. W., Chen, Z., Buck, J. W., Buntin, G. D., Babar, M. A., Mason, R. E., Harrison, S. A., Murphy, J. P., Ibrahim, A. M. H., Sutton, R. L., Simoneaux, B. E., Bockelman, H. E., Baik, B. K., Marshall, D., Cowger, C., Brown-Guedira, G. L., Kolmer, J. A., Jin, Y., Chen, X. M., and Cambron, S. E., and Mergoum, M. 2017. ‘GA 03564-12E6’: A high yielding soft red winter wheat cultivar adapted to Georgia and the south east regions of the USA. Journal of Plant Registrations 11(2):159-164. http://dl.sciencesocieties.org/publications/jpr/articles/11/2/159.



Johnson, J., Chen, Z., Buntin, G., Babar, M. A., Mason, R., Harrison, S., Murphy, P., Ibrahim, A., Sutton, R., Simoneaux, B., Bockelman, H., Baik, B., Marshall, D., Cowger, C., Browng, G., Kolmer, J., Jin, Y., Chen, X. M., Cambron, S., and Mergoum, M. 2018. ‘Savoy’: an adapted soft red winter wheat cultivar for Georgia and the south east regions of the USA. Journal of Plant Registrations 12(1):85-89. https://doi:10.3198/jpr2017.06.0039crc.


Kidwell, K. K., J. S. Kuehner, G. B. Shelton, V. L. DeMacon, S. Rynearson, X. M. Chen, S. O. Guy, J. M. Marshall, D. A. Engle, D. R. See, C. F. Morris, and M. O. Pumphrey. 2018. Registration of ‘Dayn’ Hard White Spring Wheat. Journal of Plant Registrations 2018 12:2: 222-227. doi:10.3198/jpr2017.10.0075crc.


Kandel, J. S., Krishnan, V., Jiwan, D., Chen, X. M., Skinner, D. Z. and See, D. R. 2017. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035. PLoS One 12(5):e0177898. https://doi.org/10.1371/journal.pone.0177898.


Kang, Z. H., Li, X., Wan, A. M., Wang, M. N., and Chen, X. M. 2019. Differential sensitivity among Puccinia striiformis f. sp. tritici isolates to propiconazole and pyraclostrobin fungicides Canadian Journal of Plant Pathology 41(3):415-434. https://doi.org/10.1080/07060661.2019.1577301.


Kang, Z. S., Tang, C. L., Zhao, J., Cheng, Y. L., Liu, J., Guo, J., Wang, X. J., and Chen X. M. 2017. Wheat-Puccinia striiformis interactions. Pages 155-282 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht. https://doi:10.1007/978-94-024-1111-9Kroese, D.R., Schonneker, L., Bag, S., Frost, K., Cating, R., Hagerty, C.H. (2019). Soilborne wheat mosaic virus: yield loss and distribution in the inland PNW. Crop Protection, 132: 105102.


Kidwell, K. K., Kuehner, J. S., Marshall, J., Shelton, G. B., DeMacon, V. L., Rynearson, S., Chen, X. M., Guy, S. O., Engle, D. A., Baik, B.-K., Morris, C. F., and Pumphrey, M. O. 2018. Registration of ‘Dayn’ hard white spring wheat. Journal of Plant Registrations 12(2):222-227.  https://doi:10.3198/jpr2017.10.0075crc.
 
Kidwell, K. K., Pumphrey, M. O., Kuehner, J. S., Shelton, G. B., DeMacon, V. L., Rynearson, S., Chen, X. M., Guy, S. O., Engle, D. A., Baik, B.-K., Morris, C. F., and Bosque-Pérez, N. A. 2018. Registration of ‘Glee’ hard red spring wheat. Journal of Plant Registrations 12(1):60-65. https://doi:10.3198/jpr2016.04.0022crc.
 
Kirby, E. M., Paulitz, T. C., Murray, T. D., Schroeder, K. L., and Chen, X. M. 2017. Chapter 10: Disease Management for Wheat and Barley. Pages 399-468 In: Yorgey, G. and C. Kruger, eds. Advances in Sustainable Dryland Farming in the Inland Pacific Northwest, Washington State University Extension Publication EM108, Pullman, WA, http://extension.wsu.edu/publications/pubs/em108/.


Kiszonas, A. M., Higginbotham, R. W., Chen, X. M., Garland-Campbell, K., Bosque-Peres, N.A., Pumphrey, M., Rouse, M., Hole, D., Wen, N., Craig, M. F., and Sykes, S. 2018. Effect of introgression of puroindoline genes into durum wheat on agronomic traits. Agronomy Journal 111(3):1254-1265. https://doi:10.2134/agronj2018.08.0534.
 
Klarquist, E. F., Chen, X. M., Carter, A. H. 2016. Novel QTL for stripe rust resistance on chromosomes 4A and 6B in soft white winter wheat cultivars. Agronomy 6(1):4. https://doi:10.3390/agronomy6010004.


Klos, K. E., Gordon, T., Bregitzer, P., Hayes, P., Chen, X. M., del Blanco, I. A., Fisk, S., and Bonman, J. M. 2016. Barley stripe rust resistance QTL:  Development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei. Phytopathology 106:1344-1351. http://dx.doi.org/10.1094/PHYTO-09-15-0225-R.
 
Kosman, E., Chen, X. M., Dreiseitl, A., McCallum, B., Lebeda, A., Ben-Yehuda, P., Gultyaeva, E., and Manisterski, J. 2019. Functional variation of plant-pathogen interactions: new concept and methods for virulence data analyses. Phytopathology 109(8):1324-1330. https://doi.org/10.1094/PHYTO-02-19-0041-LEKroese, D.R., Bag, S., Frost, K., Murray, T., Hagerty, C. H. (2018). Wheat soil-borne mosaic (WSBM). Plant Health Progress, 19:163-167.


Kruse, Erika, Carter, A., Klos, K., Marshall, J.M., Murray, T. 2019. Evaluating Selection of a Quantitative Trait: Snow Mold Tolerance in Winter Wheat.  Agrosyst. Geosci. Environ. 2:190059 (2019) doi:10.2134/age2019.07.0059.


Kruse, E., S. Carle, T. Murray, D. Skinner, and A. Carter. 2016. QTL analysis of snow mold and cold tolerance in soft white winter wheat cultivar ‘Eltan’. Proc. Plant and Microbe Adaptation to Cold Conference, May 23, 2016, Seattle, WA.


Kruse, E.B., S.W. Carle, N. Wen, D.Z. Skinner, T.D. Murray, K.A. Garland-Campbell, and A.H. Carter. 2017. Genomic regions associated with freezing tolerance and snow mold resistance in winter wheat. G3. Genes, Genomes, Genetics 7:775-780. doi.org: 10.1534/g3.116.037622.


Kruse, E.B., K.L.E. Klos, J. Marshall, T.D. Murray, B.P. Ward, and A.H. Carter. 2019. Evaluating Selection of a Quantitative Trait: Snow Mold Tolerance in Winter Wheat. Agrosystems, Geosciences & Environment 2:190059. doi:10.2134/age2019.07.0059.


Kruse, E.B., S. Revolinski, J. Aplin, D.Z. Skinner, T.D. Murray, C. Edwards, and A.H. Carter. 2020. Gene expression and carbohydrate accumulation in winter wheat lines with different levels of snow mold and freezing cold tolerance. Plants 9(11):1416. doi.org/10.3390/plants9111416.


Kumar, N., H.W. Randhawa, R.W. Higginbotham, X.M. Chen, T.D. Murray, and K.S. Gill. 2017. Targeted and efficient transfer of multiple value-added genes into wheat varieties. Molecular Breeding 37:68. doi 10.1007/s11032-017-0649-1.


Lewien, M.J., T.D. Murray, K.L. Jernigan, K. Garland-Campbell, and A.H. Carter. 2018. Genome-wide association mapping for eyespot disease in Pacific Northwest winter wheat. PloSONE 13(4): e0194698. doi.org/10.1371/journal.pone.0194698.


Liang X, Rashidi M, Rogers CW, Marshall J.M., Price, W.J., and Rashed A. 2019. Winter wheat (Triticum aestivum L.) response to Barley yellow dwarf virus at different nitrogen application rates in the presence and absence of its aphid vector, Rhopalosiphum padi L. (Hemiptera: Aphididae). Entomologia Experimentalis et Applicata. 2019:1-10. DOI:10.1111/eea.12748.  http://dx.doi.org/10.1111/eea.12748.


Liang, X., Strawn, D., Chen, J., Marshall, J.M. Variation in cadmium accumulation in spring wheat cultivars: uptake and redistribution to grain. Plant and Soil (2017). Pp.1-13. https://link.springer.com/article/10.1007%2Fs11104-017-3454-z.


Li, H., T.D. Murray, R.A. McIntosh, and Y. Zhou.  2019. Breeding for new cultivars warrants sustainable production of wheat. The Crop Journal 7:715-717.  doi.org/10.1016/j.cj.2019.11.001.


Lei, Y., Wang, M. N., Wan, A. M., Xia, C. J., See, D. R., Zhang, M., and Chen, X. M. 2017. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology 107(3):329-344. https://dx.doi.org/10.1094/PHYTO-07-16-0261-R.


Li, K., Hegarty, J., Zhang, C. Z., Wan, A. M., Wu, J. J., Gina L Brown-Guedira, G. L., Chen, X. M., Fu, D. L., and Dubcovsky, J. 2016. Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. Theoretical and Applied Genetics 129(4):845–859. https://doi:10.1007/s00122-015-2663-1.
 
Li, M. J., Chen, X. M., Wan, A. M., Ding, M. L., and Cheng J. S. 2018. Virulence characterization of stripe rust pathogen Puccinia striiformis f. sp. tritici population to 18 near-isogenic lines resistant to wheat yellow rust in Yunnan Province. Journal of Plant Protection 45(1):75-82. https://doi:10.13802/j.cnki.zwbhxb.2018.2017019.


Li, Y. X., Wang, M. N., See, D. R., and Chen, X. M. 2019. Ethyl-methanesulfonate mutagenesis generated diverse isolates of Puccinia striiformis f. sp. tritici. World Journal of Microbiology and Biotechnology 35:28. https://doi.org/10.1007/s11274-019-2600-6
Li, Y. X., Xia, C. J., Wang, M. N., Yin, C. T., and Chen, X. M. 2019. Genome sequence resource of a Puccinia striiformis isolate infecting wheatgrass. Phytopathology 109(9):1509-1512. https://doi.org/10.1094/PHYTO-02-19-0054-A.


Li, Y. X., Xia, C. J., Wang, M. N., Yin, C. T., and Chen, X. M. 2020. Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genomics 21:247. https://doi.org/10.1186/s12864-020-6677-y.


Liu, L., Wang, M. N., Feng, J. Y., See, D. R., and Chen X. M. 2019. Whole-genome mapping of stripe rust resistance quantitative trait loci and race-specificity related to resistance reduction in winter wheat cultivar Eltan. Phytopathology 109(7):1226-1235. https://dx.doi.org/10.1094/PHYTO-10-18-0385-R.
 

Liu, L., Wang, M. N., Feng, J. Y., See, D. R., Chao, S. M., and Chen, X. M. 2018. Combination of all-stage and high-temperature adult-plant resistance QTL confers high level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theoretical and Applied Genetics 131(9):1835-1849. https://doi:10.1007/s00122-018-3116-4.
 
Liu, L., Wang, M. N., Zhang, Z. W., See, D. R., and Chen, X. M. 2020. Identification of stripe rust resistance loci in U.S. spring wheat cultivars and breeding lines using genome-wide association mapping and Yr gene markers. Plant Disease 104(8):2181-2192. https://doi.org/10.1094/PDIS-11-19-2402-RE.


Liu, L., Yuan, C. Y., Wang, M. N., See, D. R., and Chen, X. M. 2020. Mapping quantitative trait loci for high adult-plant resistance to stripe rust in spring wheat PI 197734 using a doubled haploid population and genotyping by multiplexed sequencing. Frontiers in Plant Science 11(11):596962. https://doi.org/10.3389/fpls.2020.596962.


Liu, L., Yuan, C. Y., Wang, M. N., See, D. R., Zemetra, R. S., and Chen, X. M. 2019. QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles. Theoretical and Applied Genetics 132(6):1677-1691. https://doi:10.1007/s00122-019-03307-2.
 
Liu, M. Y., Lei, L., Powers, C., Liu, Z., Campbell, K. G., Chen, X. M., Bowden, R. L. Carver, B. F., and Yan, L. L.  2016. TaXa21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat.  Theoretical and Applied Genetics 129(2):345–355. https://doi:10.1007/s00122-015-2631-9.
 
Liu, T. L., Wan, A. M., Liu, D. C., and Chen, X. M. 2017. Changes of races and virulence genes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Plant Disease 101(8):1522-1532. https://doi.org/10.1094/PDIS-12-16-1786-RE.


Liu, W. Z., Kolmer, J., Rynearson, S., Chen, X. M., Gao, L., Anderson, J., Turner, M., and Pumphrey, M. 2019. Identifying loci conferring resistance to leaf and stripe rusts in a spring wheat population (Triticum aestivum L.) via genome-wide association mapping. Phytopathology 109(11):1932-1940. https://apsjournals.apsnet.org/doi/10.1094/PHYTO-04-19-0143-R.


Liu, W. Z., Macaferri, M., Bulli, P., Rynearson, S., Tuberosa, R., Chen, X. M., and Pumphrey, M. 2017. Genome-wide association mapping of seedling and field resistance to Puccinia striiformis f. sp. tritici in elite global durum wheat.  Theoretical and Applied Genetics 130(4):649–667. https://doi:10.1007/s00122-016-2841-9.


Liu, W. Z., Macaferri, M., Rynearson, S., Letta, T., Zegeye, H., Tuberosa, R., Chen, X. M., and Pumphrey, M. 2017. Novel sources of stripe rust resistance identified by genome-wide association mapping in Ethiopian durum wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science 8:774 (1-15). https://doi:10.3389/fpls.2017.00774.
 
Liu, W. Z., Maccaferri, M., Chen, X. M., Pumphrey, M., Laghetti, G., Pignone, D., and Tuberosa, R. 2017. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theoretical and Applied Genetics 130(11):2249-2270. https://doi:10.1007/s00122-017-2957-6.
 
Liu, Y., Qie, Y. M., Li, X., Wang, M. N., and Chen X. M. 2020. Genome-wide mapping of quantitative trait loci conferring all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat landrace PI 181410.  International Journal of Molecular Sciences 21:478(1-18). https://doi:10.3390/ijms21020478Lozada, D.N., J.G. Godoy, T.D. Murray, Ward, B.P., and A.H. Carter. 2019. Genetic dissection of snow mold tolerance in US Pacific Northwest winter wheat through genome-wide association study and genomic selection. Frontiers in Plant Science. doi.org/10.3389/fpls.2019.01337.


Luster, D.G., M.B. McMahon, A.J. Sechler, M.L. Carter, E.E. Rogers, B.K. Schroeder, and T.D. Murray. 2020. Immunoreagents for development of a diagnostic assay specific for Rathayibacter toxicus. Food and Agricultural Immunology 31:1, 231-242. doi.org/10.1080/09540105.2020.1714554.


Luster, D.G., M.B. McMahon, A.J. Sechler, E.E. Rogers, W.L. Schneider, B.K. Schroeder, and T.D. Murray. 2017. Evaluation of immunoreagents for development of a diagnostic assay specific for Rathayibacter toxicus. Phytopathology 107:S5.56.


Marshall, J.M., K. Kinzer, and R. Brueggeman. 2015. First Report of Pyrenophora teres f. maculata, the cause of spot form net blotch of barley in Idaho. Plant Disease 99(12):1860. http://apsjournals.apsnet.org/doi/pdfplus/10.1094/PDIS-03-15-0349-PDN.


Marshall, J.M. and Smiley, R.W. 2016. Spring barley resistance and tolerance to the cereal cyst nematode Heterodera avenae. Plant Disease.100:2(396-407). http://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-05-15-0498-RE.


May, D.B., Johnson, W.A., Zuck, P.C., Chen, C.C., Dyer, A.T., 2016. Assessment and management of root lesion nematodes in Montana’s wheat production.  Plant Dis. 100:2069-2079.


McKenzie, S., H. Parkinson, J. Mangold, M. Burrows, S. Ahmed, F. Menalled. 2018. Perceptions, experiences, and priorities supporting agro-ecosystem management decisions differ among agricultural producers, consultants, and researchers. Sustainability. 10: 4096. DOI: 10.3390/su10114096.


Meints, B., Brouwer, B.O., Brown, B., Cuesta-Marcos, A., Jones, S., Kolding, M., Fisk, S., Marshall, J.M., Murphy, K., Petrie, S., Rhinhart, K., Ross, A.S., and Hayes, P.M. 2015. Registration of #STRKR Barley Germplasm. J. of Plant Registrations. 9:3:388-392. doi:10.3198/jpr2014.09.0066crg.



Meints, B., A. Cuesta-Marcos, A. S. Ross, S. Fisk, T. Kongraksawech, J.M. Marshall, K. Murphy, and P.M. Hayes. 2015. Developing Winter Food Barley for the Pacific Northwest of the US. Crop Science. 55:4:1563-1573.  doi:10.2135/cropsci2014.10.0710.


Moparthi, S., M. Burrows, J. Mgbechi-Ezeri, and B. Agindotan. 2020. Fusarium spp. associated with root rot of pulse crops and their cross pathogenicity to cereal crops in Montana. Plant Disease. DOI: 10.1094/PDIS-04-20-0800-RE.


Moparthi, S., K. McPhee, B. Agindotan, C. Peluola, and M. Burrows. 2020. First report of gray mold of chickpea caused by Botrytis euroamericana. Crop Protection 137: 105297. DOI: 10.1016/j.cropro.2020.105297.


Mu, J. M., Han, D. J., and Kang Z. S. 2019. Genome-wide mapping for stripe rust resistance loci in common wheat cultivar Qinnong 142. Plant Disease 103(3):439-447. https://doi.org/10.1094/PDIS-05-18-0846-RE.
 
Mu, J. M., Liu, L., Liu, Y., Wang, M. N., See, D. R., Han, D. J., and Chen, X. M. 2020.
Muleta, K. T., Bulli, P., Rynearson, S., Chen, X. M., and Pumphrey M. 2017. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum). PLoS One 12(6):e0179087. https://doi:org/10.1371/journal.pone.0179087.


Muleta, K. T., Bulli, P., Zhang, Z. W., Chen, X. M., and Pumphrey, M. 2017. Unlocking diversity in germplasm collections by genomic selection: a case study based on quantitative adult plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in spring wheat. The Plant Genome 10:3(1-15). https://doi:10.3835/plantgenome2016.12.0124.


Muleta, K. T., Chen, X. M., and Pumphrey, M. 2020. Genome-wide mapping of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in hexaploid winter wheat. Crop Science 60(1): 115-131. https://doi.org/10.1002/csc2.20058.


Muleta, K. T., Rouse, M. N., Rynearson, S., Chen X. M., Buta, B. G., Pumphrey, M. O. 2017. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biology 17(1):134. https://doi:10.1186/s12870-017-1082-7  Murray, T.D. 2020. The war on wheat diseases. Wheat Life 63(1):42-45.


Murray, T.D. 2018. Chugging toward the last stop on the eyespot, Cephalosporium stripe express. Wheat Life 61(6):45-47.


Murray, T.D., B. Barrantes Infante, and B.K. Schroeder. 2020. First report of Bacterial Head Blight of Pseudoroegneria spicata subsp. spicata caused by Rathayibacter agropyri in Idaho. Plant Disease 104:1534.  doi.org/10.1094/PDIS-06-19-1233-PDN.



Murray, T.D., Schroeder, B.K., and B.L. Barrantes-Infante. 2017. Isolation of a new Rathayibacter species from Sporobolus cryptandrus in Northcentral Idaho. Phytopathology 107:S4.19.


Murray, T.D., B.K. Schroeder, W.L. Schneider, D.G. Luster, A. Sechler, E. Rogers, and S. Subbotin. 2017. Rathayibacter toxicus and other Rathayibacter species Inducing Bacterial Head Blight of Grasses and the potential for livestock poisonings. Phytopathology 107:804-815, doi.org/10.1094/PHYTO-02-17-0047-RVW.


Nachappa, P., Pearce, S., and Haley, S. 2021. Interactions between the wheat curl mite and viruses: Resistance status and mechanisms. Focus issue on "Insect Adaptation and Host Plant Resistance: Integrating Modern and Traditional Approaches". Andy Michel and Marion Harris (eds). Current Opinion in Insect Science 45:21–27.


Nazarov, T., Chen, X. M., Carter, A. H., and See D. R. 2020. Fine mapping of high-temperature adult-plant resistance to stripe rust in wheat cultivar Louis. Journal of Plant Protection Research 60(2):126-133. https://doi.10.24425/jppr.2020.132213].


Nishio, Z., N. Iriki, M. Ito, T. Tabiki, and T. Murray. 2020. Mapping QTL conferring speckled snow mold resistance in winter wheat (Triticum aestivum L.). Breeding Science 70:246-252. doi: 10.1270/jsbbs.19111.


Niu, Z. X., Chao, S. M., Cai, X. W., Whetten, R. B., Breiland, M., Cowger, C., Chen, X. M., Friebe, B., Gill, B. S., Rasmussen, J. B., Klindworth, D. L., and Xu, S. S. 2018. Molecular and cytogenetic characterization of six wheat-Aegilops markgrafii disomic addition lines and their resistance to rusts and powdery mildew.  Frontiers in Plant Science 9(11):1616. https://doi:10.3389/fpls.2018.01616 .


Owati, A., B. Agindotan, M. Burrows. 2020. Characterization of fungal species associated with Ascochyta blight of dry pea in Montana and North America and development of a differential medium for their detection. Plant Health Progress 21: 262-271. doi.org/10.1094/PHP-05-20-0037-RS.


Owati, A., B. Agindotan, M. Burrows. 2019. Development and application of real-time and conventional SSR-PCR assays for rapid and sensitive detection of Didymella pisi associated with Ascochyta blight of dry pea. Plant Disease. https://doi.org/10.1094/PDIS-02-19-0381-RE.


Owati, A., B. Agindotan, M. Burrows. 2019. First microsatellite markers developed and applied for the genetic diversity study and population structure of Didymella pisi associated with Ascochyta blight of dry peas in Montana. Fungal Biology 123:384-392. DOI: 10.1016/j.funbio.2019.02.004.


Owati, A., B. Agindotan, J. Pasche, M. Burrows. 2017. The detection and characterization of QoI-resistant ascochyta blight infecting pulse crops in Montana. Frontiers in Plant Science. 8. DOI: 10.3389/fpls.2017.01165.


Pooria Ensafi, David W Crowder, Aaron D Esser, Zhiguo Zhao, Juliet M Marshall, Arash Rashed. 2018. Soil Type Mediates the Effectiveness of Biological Control Against Limonius californicus (Coleoptera: Elateridae) Journal of Economic Entomology. Sep 2018, 111(5):2053-2058.


Raboy, V., Peterson, K., Jackson, C., Marshall, J.M., Hu, G., Saneoka, H., and Bregitzer, P. 2015. A Substantial Fraction of Barley (Hordeum vulgare L.) Low Phytic Acid Mutations Have Little or No Effect on Yield Across Diverse Production Environments. Plants 4:225-239. doi:10.3390/plants4020225.


Radhakrishnan, G. V., Cook, N., Bueno-Sancho, V., Lewis, C. M., Persoons, A., Mitiku, A. G., Heaton, M., Davey, P., Abeyo, B., Alemayehu, Y., Badebo, A., Barnett, M., Bryant, R., Chatelain, J., Chen, X. M., Dong, S. M., Henriksson, T., Holdgate, S., Justesen, A. F., Kalous, J., Kang, Z. S., Laczny, S., Legoff, J. -P., Lesch, D., Richards, T., Randhawa, H. S., Thach, T., Wang, M. N., Hovmøller, M. S., Hodson, D. P., and Saunders, D. G. O. 2019. Mobile and real-time plant disease (MARPLE) diagnostics for strain-level identification of complex fungal pathogens. BMC Biology 17:65. https://doi.org/10.1186/s12915-019-0684-y.


Rashed, A., Rogers, C.W., Rashidi, M., Marshall, J.M. 2016. Sugar beet wireworm Limonius californicus damage to wheat and barley: evaluations of plant damage with respect to soil media, seeding depth, and diatomaceous earth application. Arthropod-Plant Interactions, 11(2), 147-154.  DOI 10.1007/s11829-016-9474-4.


Rhanabhat, N., T. Seipel, E. Lehnhoff, Z. Miller, K. Owen, F. Menalled, M. Burrows. 2018. Weather and alternative hosts surrounding wheat influences wheat curl mite (Aceria tosichella Keifer) infestation and wheat streak mosaic virus infection during autumn in Montana, USA. Plant Dis. 102: 546-551. (Editor’s Pick) DOI: 10.1094/PDIS-06-17-0782-RE.


Roberts, R., Hind, S.R., Pedley, K.F., Diner, B.A., Szarzanowicz, M.J., Luciano-Rosario, D., Majhi, B.B., Popov, G., Sessa, G., Oh, C.-S., and Martin, G.B.. 2019.Mai1 protein acts between host recognition of pathogen effectors and mitogen-activated protein kinase signaling. Molecular Plant-Microbe Interactions. 2019. doi:10.1094/MPMI-05-19-0121-R.


Roberts, R., A.E. Liu, Wan, L., Geiger, A.M., Hind S.R., Rosli, H.G., Martin, G.B.. 2020. Molecular Characterization of Differences between the Tomato Immune Receptors Flagellin Sensing 3 and Flagellin Sensing 2.  Plant Physiology Aug 2020, 183 (4) 1825-1837; DOI: 10.1104/pp.20.00184.


Roberts, R., Mainiero, S., Powell, A.F., Liu, A.E., Shi, K., Hind, S.R., Strickler, S.R., Collmer, A. and Martin, G.B. 2019. Natural variation for unusual host responses and flagellin‐mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. New Phytol, 223: 447-461. https://doi.org/10.1111/nph.15788.



Roberts R., Mayberry L.K., Browning K.S., Rakotondrafara A.M.. 2017. The Triticum Mosaic Virus 5’ Leader Binds to Both eIF4G and eIFiso4G for Translation. PLOS ONE 12(1): e0169602. https://doi.org/10.1371/journal.pone.0169602.


Roberts R., Zhang J., Mihelich N., Savino D., Rakotondrafara A.M.. 2017. Manipulation of Oat Protoplasts for Transient Expression Assays. Methods Mol Biol. 2017;1536:55-70. doi: 10.1007/978-1-4939-6682-0_5. PMID: 28132143.


Rustgi, S., von Wettstein, D., Reisenauer, P. E., Lyon, S., Ankrah, N., Brouwer, B., Jones, S., Guy, S. O., and Chen, X. M. 2020. Registration of ‘Fritz’, a two-row, spring dual purpose barley. Journal of Plant Registrations. 14(3):242-249. https://doi:10.1002/plr2.20046Smiley, R., and Marshall, J.M. 2016. Detection of dual Heterodera avenae resistance plus tolerance traits in spring wheat. Plant Dis. 100:1677-1685.  http://apsjournals.apsnet.org/doi/pdfplus/10.1094/PDIS-09-15-1055-RE.


Stewart, E. L., Hagerty, C. H., Mikaberidze, A., Mundt, C. C., Zhong, Z., McDonald, B. A. (2016). An improved method for measuring quantitative resistance to the wheat pathogen Zymoseptoria tritici using high throughput automated image analysis. Phytopathology, 106(7): 782-788.


Sharma-Poudyal, D., Bai, Q., Wan, A. M., Wang, M. N., See, D., and Chen, X. M. 2020. Molecular characterization of international collections of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici reveals high diversity and intercontinental migration. Phytopathology 110(4):933-942. https://doi.org/10.1094/PHYTO-09-19-0355-R.


Schroeder, B.K., W.L. Schneider, D.G. Luster, A. Sechler, and T.D. Murray. 2018. Rathayibacter agropyri (non O’Gara, 1916) comb. nov., nom. rev. isolated from western wheatgrass (Pascopyrum smithii). Intl. J. Systematic and Evolutionary Microbiology 68:1519-1525. doi.org/ 10.1099/ijsem.0.002708.


Schroeder, B.K., A. Sechler, E. Rogers, D.G. Luster, W.L. Schneider, and T.D. Murray. 2018. Genetic characterization of Rathayibacter spp. present in the United States. International Congress of Plant Pathology, Boston, August 2018. Phytopathology 108(10):S1.100.


Sechler, A.J., M.A. Tancos, D.J. Schneider, J.G. King, C.M. Fennesey, B.K. Schroeder, T.D. Murray, D.G. Luster, W.L. Schneider, and E.E. Rogers. 2017.  Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis.  PloSONE 12(8): e0183005. doi.org:10.1371/journal.pone.0183005.


Sheng, H. and T.D. Murray. 2017. Comparative whole genome analysis of the wheat eyespot pathogens, Oculimacula yallundae and O. acuformis. Phytopathology 107:S5.133.



Tancos, M.A., A.J. Sechler, E.W. Davis II, J.H. Chang, B.K. Schroeder, T.D. Murray, and E. E. Rogers. 2020. The identification and conservation of tunicaminyluracil-related biosynthetic gene clusters in several Rathayibacter species collected from Australia, Africa, Eurasia, and North America. Frontiers in Microbiology DOI: 10.3389/fmicb.2019.02914.


Tancos, M.A., A.J. Sechler, E.W. Davis II, J.H. Chang, B.K. Schroeder, T.D. Murray, and E.E. Rogers. 2019. Discovery of tunicamycin-related biosynthetic gene clusters in three Rathayibacter species, including one endemic to the Northwest U.S. (R. agropyri). Phytopathology 109 S2.36. https://doi.org/10.1094/PHYTO-109-10-S2.1.


Tao, F., Hu, Y. S., Su, C., Li, J., Guo, L. L., Xu, X. M., Chen, X. M., Shang, H. S., and Hu, X. P. 2020. Revealing differentially expressed genes and identifying effector proteins of Puccinia striiformis f. sp. tritici in response to high-temperature seedling-plant resistance of wheat based on RNA-seq. mSphere 5(3):e0009620. https://doi.org/10.1128/mSphere.00096-20.


Tao, F., Wang, J. J., Guo, Z. F., Hu, J. J., Xu, X. M., Yang, J. R. Chen, X. M., and Hu, X. P.  2018. Transcriptomic analysis reveals the molecular mechanisms of wheat higher-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici.  Frontiers in Plant Science 9(2):240. https://doi:10.3389/fpls.2018.00240.


Tian, Y., Meng, Y., Zhao, X. C., Chen, X. M., Ma, H. B., Xu, S. D., Huang, L. L., Kang, Z. S., and Zhan, G. M. 2019. Trade-off between triadimefon sensitivity and pathogenicity in a selfed sexual population of Puccinia striiformis f. sp. tritici. Frontiers in Microbiology 10:2729. https://doi.org/10.3389/fmicb.2019.02729.


Tian, Y., Zhan, G. M., Chen, X. M., Tungruentragoon, A., Lu, X., Zhao, J., Huang, L. L., and Kang, Z. S. 2016. Virulence and SSR marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology 106(2):185-191. http://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-07-15-0162-R 


Vera, D.I and T.D. Murray. 2016. Occurrence and survival of apothecia of Oculimacula acuformis and O. yallundae on wheat stubble in the U.S. Pacific Northwest. Plant Disease 100:1-5.


Wan, A. M., Chen, X. M., and Yuen, J. 2016. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis. 100(5):966-975. http://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-10-15-1122-RE.


Wan, A. M., Muleta, K. T., Zegeye, H., Hundie, B., Pumphrey, M. O., and Chen, X. M. 2017. Virulence characterization of wheat stripe rust fungus Puccinia striiformis f. sp. tritici in Ethiopia and evaluation of Ethiopian wheat germplasm for resistance to races of the pathogen from Ethiopia and the United States. Plant Disease 101(1):73-80. https://dx.doi.org/10.1094/PDIS-03-16-0371-RE.



Wan, A. M., Wang, M. N., and Chen, X. M. 2019. Variation in telial formation of Puccinia striiformis in the United States. American Journal of Plant Science 10(5):826-849. https://doi.org/10.4236/ajps.2019.105060.


Wan, A. M., Wang, X. J., Kang, Z. S., and Chen, X. M. 2017. Variability of the stripe rust pathogen. Pages 35-154 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht. https://doi:10.1007/978-94-024-1111-9.


Wang, J. H., Tian, W., Tao, F., Wang, J. J., Shang, H. S., Chen, X. M., Xu, X. M., and Hu, X. P. 2020. TaRPM1 positively regulates wheat high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. Frontier in Plant Sciences 10(1):1679(1-12). https://doi.org/10.3389/fpls.2019.01679.


Wang, J. H., Wang, J. J., Shang H. S., Chen, X. M., Xu, X. M., and Hu, X. P. 2019. TaXa21, a LRR-rich receptor like kinase associated with TaWRKY76 and TaWRKY62, plays positive roles in wheat high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Molecular Plant-Microbe Interactions 32(11):1526-1535. https://doi.org/10.1094/MPMI-05-19-0137-R.


Wang, J. J., Tao, F., Tian, W., Guo Z. F., Chen, X. M., Xu, X. M., Shang, H. S., and Hu, X. P. 2017. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 12(7): e0181963. https://doi.org/10.1371/journal.pone.0181963.


Wang, L., Zheng, D., Zuo, S. X., Chen, X. M., Zhuang, H., Huang, L. L., Kang, Z. S., and Zhao, J. 2018. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici. Frontiers in Plant Science 9(2):120. https://doi:10.3389/fpls.2018.00120.


Wang, M. N., and Chen, X. M. 2017. Stripe rust resistance.  Pages 353-558 in: Chen XM, Kang ZS (eds) Stripe Rust. Springer, Dordrecht. https://doi:10.1007/978-94-024-1111-9.


Wang, N., Fan, X., Zhang, S., Liu, B., He, M. Y., Chen, X. M., Tang, C. L., Kang, Z. S., and Wang, X. J. 2020.  Identification of a hyperparasitic Simplicillium obclavatum strain affecting the infection dynamics of Puccinia striiformis f. sp. tritici on wheat. Frontiers in Microbiology 11(6):1277.  https://doi:10.3389/fmicb.2020.01277.


Wang, Z. Y., Zhao, J., Chen, X. M., Peng, Y. L., Ji, J. J., Zhao, S. L., Lu, Y. J., Huang, L. L., and Kang, Z. S. 2016. Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Disease 100:131-138. http://dx.doi.org/10.1094/PDIS-12-14-Wu, L.F., L. Cuia, H.L. Lic, L. Suna, X. Gaoa, X.M. Wanga, T.D. Murray, and H. J. Li. 2016. Characterization of resistance to cereal cyst nematode in soft white winter wheat cultivar Madsen. Plant Disease 100:679-685.



Wu, J. H., Wang, Q. L., Chen, X. M., Liu, S. J., Li, H. Y., Zeng, Q. D., Mu, J. M., Dai, M. F., Han, D. J, and Kang, Z. S. 2017. Development and validation of SNP markers for QTL underlying resistance to stripe rust in common wheat P10057. Plant Disease 101(12):2079-2087. https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-04-17-0468-RE.


Wu, J. H., Wang, Q. L., Chen, X. M., Wang, M. J., Mu, J. M., Lv, X. N., Huang, L. L., Han, D. J., and Kang, Z. S. 2016. Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Canadian Journal of Plant Pathology 38(3):317-324. http://www.tandfonline.com/doi/abs/10.1080/07060661.2016.1206039.


Wu, J. H., Wang, Q. L., Xu, L. S., Chen, X. M., Li, B., Mu, J. M., Zeng, Q. D., Huang, L. L., Han, D. J., and Kang, Z. S. 2018. Combining SNP genotyping array with bulked segregant analysis to map a gene controlling adult-plant resistance to stripe rust in wheat line 03031-1-5 H62. Phytopathology 108(1):103-113. https://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-04-17-0153-R.


Xia, C. J., Lei, Y., Wang, M. N., Chen, W. Q., and Chen, X. M. 2020. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. mSphere 5:e00128-20. https://doi.org/10.1128/mSphere.00128-20.


Xia, C. J., Wan, A. M., Wang, M. N., Jiwan, D. A., See, D. R., and Chen, X. M. 2016. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biology 120(5):729-744. http://dx.doi.org/10.1016/j.funbio.2016.02.007.


Xia, C. J., Wang, M. N., Cornejo, O. E., Jiwan, D. A., See, D. R., Chen, X. M. 2017. Secretome characterization and correlation analysis reveal putative pathogenicity mechanisms and identify candidate avirulence genes in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Frontiers in Microbiology 8:2394. https://doi:10.3389/fmicb.2017.02394.


Xia, C. J., Wang, M. N., Wan, A. M., Jiwan, D. A., See, D. R., Chen, X. M. 2016. Association analysis of SP-SNPs and avirulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. American Journal of Plant Sciences 7(1):126-137. https://dx.doi.org/10.4236/ajps.2016.71014.


Xia, C. J., Wang, M. N., Yin, C. T., Cornejo, O. E., Hulbert, S. H., and Chen, X. M. 2018. Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). BMC Genomics 19:664. https://doi.org/10.1186/s12864-018-5041-y.



Xia, C. J., Wang, M. N., Yin, C. T., Cornejo, O. E., Hulbert, S. H., and Chen, X. M. 2018. Resource Announcement: Genome sequences for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei) Molecular Plant-Microbe Interactions 31(11):1117-1120. https://doi.org/10.1094/MPMI-04-18-0107-A.


Xiang, C., Feng, J. Y., Wang, M. N., Chen, X. M., See, D. R., Wan, A. M., and Wang, T. 2016. Molecular mapping of Yr76 for resistance to stripe rust in winter club wheat cultivar Tyee. Phytopathology 106(10):1186-1193. http://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-01-16-0045-FI.


Yang, Y., Basnet, B. R., Ibrahim, A. M. H., Rudd, J. C., Chen, X. M., Bowden, R. L., Xue, Q. W., Wang, S. C., Johnson, C., Metz, R., Mason, R. E., Hays, D. B., and Liu, S. Y. 2019. Developing KASP markers on a major stripe rust resistance QTL in TAM 111 using 90K array and genotyping-by-sequencing SNPs. Crop Science 59(1):165-175. https://doi:10.2135/cropsci2018.05.0349.


Yao, F. J., Long, L., Wang, Y. Q., Duan, L. Y., Zhao, X. Y., Jiang, Y. F. Pu, Z. E., Li, W., Jiang, Q. T., Wang, J. R., Wei, Y. M., Ma, J., Kang, H. Y., Dai, S. F., Qi, P. F., Zheng, Y. L., Chen, X. M., and Chen, G. Y. 2020. Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a geno

Attachments

Land Grant Participating States/Institutions

CO, KS, MN, MT, OR, VA, WA

Non Land Grant Participating States/Institutions

ARS-WA, Colorado State University
Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.