S1089: Advanced Understanding and Prediction of Pollutants in Critical Landscapes in Watersheds
(Multistate Research Project)
Status: Active
Date of Annual Report: 12/02/2021
Report Information
Period the Report Covers: 10/01/2020 - 09/30/2021
Participants
In-person attendees: Soni M. Pradhanang, Rafael Muñoz-Carpena, Francois Birgand, Aleksey Seshukov, Fouad Jaber, Young Gu HerVirtual Attendees: Adel Shirmohammadi, Brian Benham, David Sample, Elizabeth Boyer Kevin Wagner, Latif Kalin, George Vellidis, Rabin Bhattarai, Sara McMillam, Sanjiv Kumar, Saurav Kumar, Shreeram Inamdar, Zachary Easton
Brief Summary of Minutes
The annual meeting was held at the University of Florida, FL in September 2021 focused on addressing S1089 objectives, accomplishments, and identifying potential tasks or research products to be initiated or continued by the members of the Multistate Exchange Group. Presentations of the different accomplishments and future goals to be pursued by members of S1089 were held during the annual meeting. Live and virtual members’ presentations involved the members’ involvement and the project accomplishments.
The project team, both in-person and virtual attendees, spent about 2 hours discussing the journal special issue collection, brainstormed research topics, and potential journals. Dr. Muñoz-Carpena gave a brief insight to how the special issues need to be handled. He emphasized improving science with quality publications.
The in-person project members then went to Sweetwater Branch Watershed for the field trip. The next annual meeting will be held in Texas A&M, Dallas.
The project team members decided to develop a special issue articles collection for the Journal of Environmental Management.
Accomplishments
<p>The principal focus of this project is to evaluate the effectiveness of best management practices (BMPs) at the watershed scale. This includes the water quality and environmental benefits of mitigation practices as well as their cost-effectiveness. This will be achieved through monitoring at sub-watershed scales, modeling at larger spatial scales, and analysis of uncertainty in both monitoring and modeling efforts. This report summarizes the activity on this project from October 2020 to September 2021, and the following sections highlight accomplishments from project teams:</p><br /> <p> </p><br /> <p><span style="text-decoration: underline;">Texas A&M (Fouad Jaber)</span></p><br /> <p>Texas A&M team has developed TMDL Report Selection Tool (http://Occviz.com/tmdl ). This tool uses natural language processing to understand linkages between modeling tools and impairments. Other tools such as BMP-Net, a deep neural network based on PlanetScope data, was also developed to identify vegetative and structural BMPs in the world from satellite imagery. The member of the team works closely with USEPA to develop national scale water quality models at huc8, 10, 12, and 14 digits for the entire U.S. and to develop GIS Tool for determining flood prone areas in Denton county for use in Hazard Mitigation Planning. In addition, the Texas A&M team works closely with Nature Conservancy to develop Green stormwater infrastructure prioritization maps for Dallas flooding.</p><br /> <p><span style="text-decoration: underline;">University of Florida (R. Muńoz-Carpena)</span></p><br /> <p>We started (1) reviewing existing BMP practices and modeling options available for Florida and other participating states and (2) exploring new ones applicable to the States. We investigated important hydrology and pollution processes in critical landscapes including preferential flow in riparian areas (Orozco-Lopez and R. Muñoz-Carpena, 2021; Guertault et al., 2021; Orozco-Lopez et al., 2021), ephemeral gully development, and conservation tillage (Luquin et al., 2021), pathogen transport and concentration in agricultural irrigation ponds (Vazquez et al., 2021), impacts of irrigation at the watershed scale (Mompremier et al., 2020), algal blooms in coastal areas and lakes affected by terrestrial sources (Medina et al, 2020; Nelson et al. 2020), combining satellite remote sensing with groundwater monitoring to estimate historical wetland changes affected by upland development (Alonso et al., 2020), forecasting of stream recession hydrographs for critical events (Delforge et al., 2020), uncertainty and sensitivity analysis of models (Nelson et al., 2020; Moreno-Cadena et al., 2020). Dr. Muñoz-Carpena is also starting as Chair of this Hatch Project for the next year and will coordinate the reporting and efforts. Under the organization of this group, we will also submit and develop a special journal collection on the topic of "Advances and gaps in agricultural and urban BMPs across critical scales” that will be submitted to a top-tier journal in the specialty.</p><br /> <p><br /><span style="text-decoration: underline;">Oklahoma State University (Kevin Wagner)</span></p><br /> <p>Oklahoma State University team has an active research project that is focused towards understanding & improving grazing land water quality. The objective of this research is to quantify nutrient, E. coli, and sediment runoff concentrations and loadings from a variety of land uses and land covers and small Watershed Monitoring. The research team also uses UAV imagery and GIS analysis for vegetation characterization, groundcover visual estimation, relative cattle/wildlife density with game camera deployment. The sub-objectives of the research include assessing “background” loadings, assessing how “background” loadings change with wildlife habitat, and assessing the effects of grazing on loadings.</p><br /> <p><span style="text-decoration: underline;">University of Georgia (G. Vellidis)</span></p><br /> <p>The University of Georgia team is currently working on the project that focuses on the measurement and simulation of the Environmental Effects of High Maize Yields in Georgia. The objectives are to (i) evaluate the water quality effects of fertilization rates used to achieve high yield goals (350 – 500 kg N ha-1), (ii) use the HYDRUS-1D transport model to simulate the system and estimate N leaching losses, (iii) Use the HYDRUS-1D and DSSAT CERES-Maize models to evaluate maize irrigation scheduling management scenarios that would result in high yields while minimizing leaching of NO3-N. Other project includes (i) Best Management Practice Evaluation in the Lower Flint River Basin, (ii) Evaluate “cutting-edge” management strategies/tools with potential to improve nitrogen and water use efficiency, (iii) Fertigation in corn and cotton, (iv)ET-based irrigation scheduling tools on smartphone platforms, (v) DSSAT (CERES-Maize and CSM-CROPGRO-Cotton), and (vi) provide data for regional modeling with SWAT in collaboration with Auburn University.</p><br /> <p><span style="text-decoration: underline;">Purdue University (S. McMillan)</span></p><br /> <p>At Purdue University, McMillan is working on research related to floodplain restoration in agricultural landscapes. Restored riverine floodplains trap sediments and associated pollutants, promote denitrification but enhance phosphorus release. These patterns are driven by floodplain geomorphology, soil microbes, and vegetation highlighting opportunities for the restoration design. Water quality impacts of agricultural conservation practices include (i) multi-year monitoring and modeling to link water quality outputs to agricultural conservation practices, (ii) connecting stakeholders with scientists & engineers to better implement and evaluate environmental outcomes, and (iii) time series analysis using historical monitoring data for change detection.</p><br /> <p><span style="text-decoration: underline;">University of Rhode Island (S Pradhanang) </span></p><br /> <p>Supported by USDA-AFRI, the Pradhanang Lab is advancing research to evaluate riparian zone functions in glaciated settings for decision-support purposes with respect to N and P fluxes. Supported by the RI DOT, a study to evaluate the effectiveness of improved roadside best management practices in maintaining stormwater quality was completed in early 2021. The project developed a stormwater runoff model for sub-urban areas in Southern Rhode Island, as well as assessed model uncertainty and calibration through the application of Bayesian statistics. A research project on the impacts of saltwater intrusion in coastal aquifers due to storm surges was completed in early 2021. Observation and model-based nutrient transport research supported by EPA is still ongoing. The sUAS-thermal infra-red-based imaging study to track shallow groundwater plumes and contaminants is still underway. The statewide water uses, and availability database project started in 2020 and will end in 2022.</p><br /> <p>Gold and the team have been working on New England Dams and stormwater quality studies using high-frequency sensors.</p><br /> <p><span style="text-decoration: underline;">Kansas State University (A. Sheshukov)</span></p><br /> <p>At KSU, the Sheshukov watershed research lab has active projects from USDA-ARS, USDA-NRCS, and USGS on improving soil health on agricultural fields and water quality in Kansas water bodies. Specifically, the activity is focused on: (i) developing a validated methodology for defining and prioritizing areas in the agricultural landscape susceptible to ephemeral gully erosion and identifying most beneficial BMPs, (ii) providing a prediction framework for cyanoHAB occurrence in lakes and reservoirs by accounting for mechanisms that drive cyanobacterial growth and toxin production, and (iii) evaluating the applicability of cotton production in Kansas and its effects on soil health. Each project is in its first year of activities, and we are collecting field data and developing datasets that will be used for specific models’ validation. For the ephemeral gully project, we are collecting data from various sources (LiDAR, historic aerial imagery, historic maps, etc) to identify and map the gullies in 30 MPRAs (or >100 HUC-12 watersheds) across Kansas, Iowa, Nebraska, and Missouri. The sampling equipment has been installed in Marion Reservoir (KS) for HAB specific data collection. For the cotton project, two metro stations with above and below ground sampling equipment were installed on three fields, and evaluation of four different irrigation practices and two crop densities are presently underway. The activity in these projects will continue in 2022.</p><br /> <p><span style="text-decoration: underline;">North Carolina State University (F. Birgand)</span></p><br /> <p>The NCSU team has an active research project that focuses on the assessment of tools used for monitoring of BMPs. The focus is on monitoring stormwater wetland nutrient influxes</p><br /> <p>UV-Vis in situ spectrophotometer is used largely for data collected. The research focuses on providing guidelines on how to obtain best data, estimating uncertainties on annual and event load values, accounting for uncertainties associated with Q-proportional sampling. The main outcome of the research is (i) sampling the entire event, in practice capture peak flow and 60% duration, assuming majority of pollutants is transported in the first part, (ii) too few samples brings error, too many might not sample entire event (best guides suggest a collection of ~12-16 (field based) & 30 (statistics) samples per event to estimate within 10-20% error range, and (iii) early pollutant peaks if collected can lead to overestimation of EMC, but we still want to start sampling early within the event.</p><br /> <p> </p><br /> <p><span style="text-decoration: underline;">University of Illinois (R. Bhattarai)</span></p><br /> <p>UI-UC team is currently working on a few research projects such as</p><br /> <p>(i) the web-based decision support tool for winter cover crop management</p><br /> <p>(ii) Watershed-scale response of agricultural systems to drainage water management in Central Illinois</p><br /> <p>(iii) Effect of subsurface drain depth and spacing on water quality and crop yield</p><br /> <p>(iv) Probabilistic assessment of adequacy and development of nutrient load reduction goals under a changing climate</p><br /> <p>(v)Balancing water quality, nutrient management, and yield goals for the sustainable intensification of agricultural systems in Illinois</p><br /> <p> </p><br /> <p><span style="text-decoration: underline;">Penn State University (E. Boyer)</span></p><br /> <p>The team has an active project on the transport of nitrogen-rich groundwater to surface waters by riparian macropore flow in an agriculturally dominated watershed. The goal is to quantify how much of the streamflow nitrogen load (under base-flow conditions in an agricultural watershed) comes from groundwater seeps, versus diffuse matrix flow through the streambed?</p><br /> <p><span style="text-decoration: underline;">University of Kentucky (W. Ford)</span></p><br /> <p>Research at the University of Kentucky has focused on quantifying source provenance and hydrologic pathways of contaminants in karst and tile-drained landscapes, as well as the fate and transport of contaminants in headwater streams, restored stream reaches, and river-tributary confluences. Research in tile drained landscapes have focused on monitoring sediment transport and flow pathway dynamics at the edge of the field. Research in heterogeneous karst watersheds has focused on the impacts of flow pathways and water source dynamics on nitrate and dissolved reactive P loadings at the watershed scale. Research in fluvial systems has focused on aquatic vegetation characterization using UAVs, impacts of stream restoration on hydrology and water quality in karst landscapes, and fate and transport of sediments and nutrients in river-tributary confluences. Research over the past year has focused on the collection of novel datasets that will be implemented within hydrologic and water quality modeling frameworks in subsequent years. Datasets include high-frequency in situ sensors, stable isotopes of dissolved and particulate-bound nutrients, and remotely sensed aerial images using visible and multispectral cameras attached to UAVs. </p><br /> <p><span style="text-decoration: underline;">Auburn University (J. Lamba)</span></p><br /> <p>Research at the Auburn university has focused on field and lab-scale, mixed with mathematical modeling, modeling non-point source pollution and wetland nutrient cycles addressing all the four objectives. Research examples include land-use change and climate variability and extremes, with the goal of improving predictability and quantifying uncertainty in the availability of natural resources at sub-seasonal to decadal time scales, and providing data-driven quantitative information to decision-makers about long-term management of natural resources.</p><br /> <p><span style="text-decoration: underline;">University of Maryland (A. Shirmohammadi)</span></p><br /> <p>The University of Maryland has been working on interfacing SWAT Hydrologic/Water Quality model with Agent-Based Modeling and Diagnostic Decision Support System (DDSS) to facilitate targeted BMP implementation with social, economic, and policy feasibilities included. The team expanded their approach to include nonlinear optimization in the form of Genetic Algorithms (GAs) and social modeling strategy to better account for heterogeneity in individual behavior in cases where spatial fluctuations in mean behavior are mild within a study watershed. The team is using the existing database from multiple sources (USGS, NLCD, NLDAS, SSURGO, etc.) and collecting IRB-approved stakeholder surveys to use for calibration and validation of our multi-faceted modeling technologies.</p>Publications
<p><span style="text-decoration: underline;"><strong>Peer Reviewed Journal Publications</strong></span><strong>: </strong><span style="text-decoration: underline;"><br /></span></p><br /> <ol><br /> <li>Budhathoki., S., J. Lamba, P. Srivastava, K. Malhotra, S. Katuwal, and T. R. Way. 2021. Using X-ray Computed Tomography to Quantify Variability in Soil Macropore Characteristics in Pastures. Soil and Tillage Research. Accepted.</li><br /> <li>Kumar, K., P. Srivastava, B. V. Ortiz, G. Morata, B. S. Takhellambam, J. Lamba, and L. Bondesan. 2021. Field-Scale Spatial and Temporal Soil Water Variability in Irrigated Croplands. Transactions of the ASABE: 64 (4), 1277-1294. doi: 10.13031/trans.14335</li><br /> <li>Bhatta, A, R. Prasad, D. Chakraborty, J.N. Shaw, J. Lamba, E. Brantley, H.A. Torbert. 2021. Mehlich 3 as a generic soil test extractant for environmental phosphorus risk assessment across Alabama soil regions. Agrosyst Geosci Environ. 2021; 4:e20187. https://doi.org/10.1002/agg2.20187</li><br /> <li>Duan, Y., Kumar, S., & Kinter, J. L. (2021). Evaluation of long-term temperature trend and variability in CMIP6 multimodel ensemble. Geophysical Research Letters, 48, e2021GL093227. <a href="https://doi.org/10.1029/2021GL093227">https://doi.org/10.1029/2021GL093227</a></li><br /> <li>Sutton, C., Kumar, S., Lee, M.-K., Davis, E. (2021). Human imprint of water withdrawals in the wet environment: a case study of declining groundwater in Georgia, USA. Journal of Hydrology – Regional Studies. In press.</li><br /> <li>Esit, M., Kumar, S., Pandey, A., Lawrence, D. M., Rangwala, I., and Yeager S. Seasonal to multi-year soil moisture drought forecasting. npj Clim Atmos Sci 4, 16 (2021). <a href="https://doi.org">https://doi.org/10.1038/s41612-021-00172-z</a></li><br /> <li>Duan, Y., & Kumar, S. (2020). Predictability of Seasonal Streamflow and Soil Moisture in National Water Model and a Humid Alabama-Coosa-Tallapoosa River Basin. <em>Journal of Hydrometeorology</em>, DOI: 10.1175/JHM-D-19-0206.1</li><br /> <li>Kumar, S., Newman, M., Lawrence, D. M., Lo, M. H., Akula, S., Lan, C. W., ... & Lombardozzi, D. (2020). The GLACE-Hydrology Experiment: Effects of Land-Atmosphere Coupling on Soil Moisture Variability and Predictability. <em>Journal of Climate</em>, (2020). DOI: 10.1175/JCLI-D-19-0598.1 </li><br /> <li>Bhandari, R., Kalra, A., & Kumar, S. (2020). Analyzing the effect of CMIP5 climate projections on streamflow within the Pajaro River Basin. <em>Open Water Journal</em>, <em>6</em>(1), 5.</li><br /> <li>Singh, A., Kumar, S., Akula, S., Lawrence, D. M., & Lombardozzi, D. L. (2020). Plant Growth Nullifies the Effect of Increased Water Use Efficiency on Streamflow Under Elevated CO2 in the Southeastern United States. Geophysical Research Letters, e2019GL086940.</li><br /> <li>He*, J., M. Hantush, L. Kalin, M. Rezaeianzadeh*, S. Isik*, "Two-Layer Vertically-Averaged Soil Moisture Dynamics: Numerical Model", Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126797.</li><br /> <li>Yao, Y., H. Tian, L. Kalin, S. Pan, M. Friedrichs, J. Wang, Y. Li (2021), "Contrasting stream water temperature responses to global change in the Mid-Atlantic Region of the United States: A process-based modeling study", Journal of Hydrology, Vol 601, https://doi.org/10.1016/j.jhydrol.2021.126633.</li><br /> <li>Tian, D., X. He, P. Srivastava, L. Kalin (2021), "A hybrid framework for forecasting monthly reservoir inflow based on machine learning techniques with dynamic climate forecasts, satellite-based data, and climate phenomenon information", Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-021-02023-y.</li><br /> <li>Wang, F., D. Tian, L. Lowe, L. Kalin, J. Lehrter (2021), “Deep Learning for Daily Precipitation and Temperature Downscaling”, Water Resources Research. doi: 10.1029/2020WR029308.</li><br /> <li>Karki*, R., P. Srivastava, L. Kalin, S. Mitra, S. Singh (2021), “Assessment of impact in groundwater levels and stream-aquifer interaction due to increased groundwater withdrawal in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin using MODFLOW”, Journal of Hydrology: Regional Studies. Vol 34. https://doi.org/10.1016/j.ejrh.2021.100802.</li><br /> <li>Celik*, S., C. Anderson, L. Kalin, M. Rezaeianzadeh* (2021), “Long-term salinity, hydrology, and forested wetlands along a tidal freshwater gradient”, Estuaries and Coast. https://doi.org/10.1007/s12237-021-00911-8.</li><br /> <li>Ramesh*, R. L. Kalin, M. Hantush, A. Chaudhary (2021), “A Secondary Assessment of Sediment Trapping Effectiveness by Vegetated Buffers”, Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2020.106094.</li><br /> <li>Noori*, N., L. Kalin, S. Isik* (2020), “Water Quality Prediction Using SWAT-ANN Coupled Approach”, Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125220.</li><br /> <li>Ramesh*, R., C. Anderson, L. Kalin (2020), “Characterizing Nitrogen Attenuation by Headwater Slope Wetlands across Different Land Uses”, Ecological Engineering. Vol 149. https://doi.org/10.1016/j.ecoleng.2020.105833.</li><br /> <li>Dosdogru*, F., L. Kalin, R. Wang*, H. Yen (2020), "Potential Impacts of Land Use/Cover and Climate Changes on Ecologically Relevant Flows", Journal of Hydrology, Vol 584, https://doi.org/10.1016/j.jhydrol.2020.124654.</li><br /> <li>Karki*, R., P. Srivastava, D. Bosch, L. Kalin, J. Lamba, T. Strickland (2020), “Multi-variable sensitivity analysis, calibration, and validation of a field-scale SWAT model: Building Stakeholder Trust in Hydrologic/Water Quality Modeling”, Transactions of the ASABE. 63(2): 523-539. DOI: 10.13031/trans.13576.</li><br /> <li>Ramesh*, R. L. Kalin, M. Hantush, M. Rezaeinzadeh*, C. Anderson (2020), “Challenges in Calibrating Hydrology for Groundwater-Fed Wetlands: A Headwater Wetland Case Study”, Environmental Modeling & Assessment. DOI: 10.1007/s10666-019-09684-8.</li><br /> <li>Pickering, C., <strong>Ford, W.I.</strong> <em>In Press</em>. Effect of watershed disturbance and river-tributary confluences on watershed sedimentation in the Western Allegheny Plateau. <em>Journal of Hydrology. </em></li><br /> <li>Nazari, S., <strong>Ford, W.I., </strong>King, K. <em>In Press</em>. Quantifying Field-scale Hydrologic Pathway and Connectivity Dynamics in Tile-Drainage: Implications for P concentrations. <em>Vadose Zone Journal</em></li><br /> <li>Hood, R., G. Shenk, R. Dixon, W. Ball, J. Bash, P. Claggett, <strong>Z.M. Easton</strong>, M. Friedrichs, T. Ihde, L. Linker, A. Miller, G. Noe, K. Rose, J. Testa, R. Tian, T. Veith, L. Wainger, D. Weller, J. Zhang. 2021. The Chesapeake Bay Program management modeling system: progress, challenges, and prospects. Ecological Modeling. <a href="https://doi.org/10.1016/j.ecolmodel.2021.109635">https://doi.org/10.1016/j.ecolmodel.2021.109635</a></li><br /> <li>Nayeb Yazdi, M., Scott, D., <strong>Sample, D. J.</strong>, and Wang, X., 2021. Efficacy of a retention pond in treating stormwater nutrients and sediment. Journal of Cleaner Production, 290, 125787. <a href="https://doi.org/10.1016/j.jclepro.2021.125787">https://doi.org/10.1016/j.jclepro.2021.125787</a></li><br /> <li>Nayeb Yazdi, M., <strong>Sample, D.</strong>, Scott, D., Wang, X., and Ketabchy, M., 2021. The effects of land use characteristics on urban stormwater quality and watershed pollutant loads. Science of the Total Environment, <a href="https://doi.org/10.1016/j.scitotenv.2021.145358">https://doi.org/10.1016/j.scitotenv.2021.145358</a></li><br /> <li>Twombly, C., J. Faulkner, A. Collick, <strong>Z.M. Easton</strong>. 2021. Identification of P Index improvements through model comparisons across topographic regions in a small agricultural watershed in Vermont, USA. Soil Science Society of America Journal. <a href="http://doi.org/10.1002/saj2.20254">http://doi.org/10.1002/saj2.20254</a></li><br /> <li> Xu, Y., D. Bosch, M. Wagena, A. Collick, and <strong>Z.M. Easton</strong>. 2020. Reducing costs of mitigating nitrogen loadings by within- and cross-county targeting. J. Environ. Manag. <a href="https://doi.org/10.1016/j.jenvman.2020.110333">https://doi.org/10.1016/j.jenvman.2020.110333</a></li><br /> <li>Modi, P., D.R. Fuka, and <strong>Z.M. Easton</strong>. 2021. Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershed. J. Hydrol. Regional Studies. <a href="https://doi.org/10.1016/j.ejrh.2021.100830">https://doi.org/10.1016/j.ejrh.2021.100830</a></li><br /> <li>Li, W., Cheng, X., Zheng, Y., Lai, C., <strong>Sample, D</strong>. J., Zhu, D., and Wang, Z., 2021. Response of non-point source pollution to landscape pattern: case study in mountain-rural region, China. Environmental Science and Pollution Research. <a href="https://doi.org/10.1007/s11356-020-12196-8">https://doi.org/10.1007/s11356-020-12196-8</a></li><br /> <li>Ahmadisharaf, E., & <strong>Benham, B</strong>. L. 2020. Risk-based decision making to evaluate pollutant reduction scenarios. <em>SCIENCE OF THE TOTAL ENVIRONMENT</em>, <em>702</em>, 10 pages. doi:<a href="http://doi.org/10.1016/j.scitotenv.2019.135022">10.1016/j.scitotenv.2019.135022</a></li><br /> <li>Ahmadisharaf, E., Lacher, I. L., Fergus, C.,<strong> Benham, B</strong>. L., Akre, T., & Kline, K. S. 2020. Projecting land use change impacts on nutrients, sediment and runoff in multiple spatial scales: Business-as-usual vs. stakeholder-informed scenarios. <em>JOURNAL OF CLEANER PRODUCTION</em>, <em>257</em>, 14 pages. doi:<a href="http://doi.org/10.1016/j.jclepro.2020.120466">10.1016/j.jclepro.2020.120466</a></li><br /> <li>Bock, E., and Z.M. <strong>Easton</strong>. 2020. Export of nitrogen and phosphorus from golf courses in the Mid Atlantic, are current export rates accurate? J. Environ. Manag. <a href="https://doi.org/10.1016/j.jenvman.2019.109817">https://doi.org/10.1016/j.jenvman.2019.109817</a></li><br /> <li>Coffey, R., Butcher, J., <strong>Benham, B</strong>., & Johnson, T. 2020. Modeling the effects of future hydroclimatic conditions on microbial water quality and management practices in two agricultural watersheds. <em>TRANSACTIONS OF THE ASABE</em>, <em>63</em>(3), 753-770. doi:<a href="http://doi.org/10.13031/trans.13630">10.13031/trans.13630</a></li><br /> <li>Dos Reis B., <strong>Z.M. Easton</strong>, R.R. White and D.R. Fuka. 2021.<a href="https://scholar.google.com/scholar?oi=bibs&cluster=14024963733617023966&btnI=1&hl=en"> A LoRa sensor network for monitoring pastured livestock location and activity</a>. Translational Animal Science. <a href="https://doi.org/10.1093/tas/txab010">https://doi.org/10.1093/tas/txab010</a></li><br /> <li>Dos Reis B., D.R. Fuka,<strong> Z.M. Easton</strong>, and R.R. White. 2021. An open-source research tool to study triaxial inertial sensors for monitoring selected behaviors in sheep. Translational Animal Science 4(4):01 Oct 2020. doi.org/10.1093/tas/txaa188</li><br /> <li>Dos Reis B., D.R. Fuka, <strong>Z.M. Easton</strong>, and R.R. White. 2020. An open-source microprocessor-based sensor for monitoring grazing animal behaviors. Journal of Dairy Science 103:9, 0022-0302</li><br /> <li><strong>Easton, Z.M.</strong>, E.M. Bock, and K. Stephenson. 2020. Feasibility of employing bioreactors to treat legacy nutrients in emergent groundwater. Environ. Sci and Technology. <a href="http://dx.doi.org/10.1021/acs.est.9b04919">http://dx.doi.org/10.1021/acs.est.9b04919</a></li><br /> <li>Wagena, M.B., D.G. Goering, A.S. Collick, E.M. Bock, A.R. Buda, D.R. Fuka, and <strong>Z.M. Easton</strong>. 2020. A comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environ. Model & Software. <a href="about:blank">https://10.1016/j.envsoft.2020.104669</a>.</li><br /> <li> Almadari, N., D. Sample, A. Ross, and <strong>Z.M. Easton</strong>. 2020. Evaluating the impact of climate change on water quality and quantity in an urban watershed using an ensemble approach. Estuaries and Coasts. 1-17. 10.1007/s12237-019-00649-4.</li><br /> <li>Wagena, M.B., G. Bhatt, A.R. Sommerlot, E. Buell, D.R. Fuka, and <strong>Z.M. Easton</strong>. 2020. Quantifying structural model uncertainty using a Bayesian multi model ensemble. Env. Model Software. <a href="https://doi.org/10.1016/j.envsoft.2019.03.013">https://doi.org/10.1016/j.envsoft.2019.03.013</a></li><br /> <li>Schmadel N, J Harvey, R Alexander, E Boyer, G Schwarz, J Gomez-Velez, D Scott, and C Konrad (2020). Low threshold for nitrogen concentration saturation in headwaters increases regional and coastal delivery. Environmental Research Letters, DOI: 10.1088/1748-9326/ab751b </li><br /> <li>Redder BW, CD Kennedy, AR Buda, G Folmar, and EW Boyer (2021). Groundwater contributions of flow and nitrogen in a headwater agricultural watershed. Hydrological Processes, DOI: 10.1002/hyp.14179</li><br /> <li>Lewis, E., S.M. Inamdar, A.J. Gold, K. Addy, T. Trammell, D. Merritts, S., M. Peipoch, P.M. Groffman, J. Hripto, M. Sherman, J. Kan, R. Walter and E.P. Lewis. 2021. Draining the landscape: How do nitrogen concentrations in riparian groundwater and stream water change following milldam removal? Journal of Geophysical Research – Biogeosciences. <a href="https://doi.org/10.1029/2021JG006444">https://doi.org/10.1029/2021JG006444</a></li><br /> <li>Suriano, Z. J., C. M. Siegert, D. J. Leathers, A. J. Gold, K. Addy, A. W. Schroth, E. Seybold, S. Inamdar, and D. F. Levia. 2021. Effects of atmospheric circulation on stream chemistry in forested watersheds across the northeastern United States: Part 2. Interannual weather type variability. Journal of Geophysical Research: Atmospheres. e2021JD034546.</li><br /> <li>Hollister. J. W., Kellogg, D. Q., Kreakie, B. J., Shivers, S., Milstead, W. B., Herron, E., Green, L., Gold, A. 2021. Increasing Chlorophyll, <em>a </em>Amid Stable Nutrient Concentrations in Rhode Island Lakes and Reservoirs. Ecosphere 12, no. 6 (2021): e03555.</li><br /> <li>Suchy, A., P. Groffman, L. Band, J. Duncan, A.J. Gold, J. M. Grove, D. Locke, L.A. Templeton, Laura A. 2021. Landscape approach to nitrogen cycling in urban lawns reveals the interaction between topography and human behaviors. Biogeochemistry. 152:73–92</li><br /> <li> Siegert, CM, ZJ Suriano, DJ Leathers, AJ Gold, K Addy, AW Schroth, E Seybold, S Inamdar, DF Levia. 2021. Effects of Atmospheric Circulation on Stream Chemistry in Forested Watersheds across the Northeastern United States: Part 1. Synoptic-scale Forcing. Journal of Geophysical Research – Atmospheres.</li><br /> <li> Inamdar, S., M. Peipoch, A.J. Gold, E. Lewis, J. Hripto, K. Addy, D. Merritts, J. Kan, P. M. Groffman, R. Walter, and T. Trammell. 2021. Ghosts of landuse past: Legacy effects of milldams for riparian water quality and ecosystem function. Environ. Research Letters. 16: 035016</li><br /> <li> Moatar, F., M. Floury, A.J. Gold, M. Meybeck, B. Renard, A. Chandesris, C. Minaudo, K. Addy, J. Piffady and G. Pinay. 2020. Stream solutes and particulates export regimes: A new framework to optimize their monitoring. Frontiers in Ecology and Evolution. 7:516.</li><br /> <li>Panthi, J., Talchabhadel, R., Ghimire, G.R., Sharma, S., Dahal, P., Baniya, R., Boving, T., Pradhanang, S.M. and Parajuli, B., 2021. Hydrologic Regionalization under Data Scarcity: Implications for Streamflow Prediction. <em>Journal of Hydrologic Engineering</em>, <em>26</em>(9), p.05021022.</li><br /> <li>Tamanna, M., Pradhanang, S.M., Gold, A.J., Addy, K. and Vidon, P.G., 2021. Riparian Zone Nitrogen Management through the Development of the Riparian Ecosystem Management Model (REMM) in a Formerly Glaciated Watershed of the US Northeast. <em>Agriculture</em>, <em>11</em>(8), p.743.</li><br /> <li>Jahan, K., Pradhanang, S.M. and Bhuiyan, M.A.E., 2021. Surface Runoff Responses to Suburban Growth: An Integration of Remote Sensing, GIS, and Curve Number. <em>Land</em>, <em>10</em>(5), p.452.</li><br /> <li>Young, K.S. and Pradhanang, S.M., 2021. Small Unmanned Aircraft (sUAS)-Deployed Thermal Infrared (TIR) Imaging for Environmental Surveys with Implications in Submarine Groundwater Discharge (SGD): Methods, Challenges, and Novel Opportunities. <em>Remote Sensing</em>, <em>13</em>(7), p.1331.</li><br /> <li>Jahan, K. and Pradhanang, S.M., 2020. Predicting Runoff Chloride Concentrations in Suburban Watersheds Using an Artificial Neural Network (ANN). <em>Hydrology</em>, <em>7</em>(4), p.80.</li><br /> <li>Tamanna, M., Pradhanang, S.M., Gold, A.J., Addy, K., Vidon, P.G. and Bingner, R.L., 2020. Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast. <em>Water</em>, <em>12</em>(12), p.3525.</li><br /> <li>Clearing up cloudy waters: a review of sediment impacts to unionid freshwater mussels https://doi.org/10.1139/er-2020-0080 (Jaber)</li><br /> <li>How does increasing impervious surfaces affect urban flooding in response to climate variability? https://doi.org/10.1016/j.ecolind.2020.106774 (Jaber)</li><br /> <li>Advanced filtration in greywater treatment: a modelling approach with water reuse perspectives <a href="https://doi.org/10.1080/1573062X.2020.1828498">https://doi.org/10.1080/1573062X.2020.1828498</a> (Jaber)</li><br /> <li>Selecting Reliable Models for TMDL <a href="https://doi.org/10.1061/(ASCE)HE.1943-5584.0002102">https://doi.org/10.1061/(ASCE)HE.1943-5584.0002102</a> (Kumar)</li><br /> <li>Margin of Safety in TMDLs: Natural Language Processing-Aided Review <a href="https://doi.org/10.1061/(ASCE)HE.1943-5584.0001889">https://doi.org/10.1061/(ASCE)HE.1943-5584.0001889</a> (Kumar)</li><br /> <li>ASCE-EWRI Manual of Practice for TMDL development (in press) (Kumar)</li><br /> <li>Koudahe, K., Sheshukov, A.Y., Aguilar, J., Djaman, K. (2021) Irrigation-Water Management and Productivity of Cotton: A Review. Sustainability. 131: 70. <a href="https://doi.org/10.3390/su131810070">https://doi.org/10.3390/su131810070</a></li><br /> <li>Oker, T.E., A.Y. Sheshukov, J. Aguilar, D.H. Rogers, I. Kisekka. (2021) Evaluating Soil Water Redistribution under Mobile Drip Irrigation, Low-Elevation-Spray-Application, and Low-Energy-Precision-Application using HYDRUS. Irrigation and Drainage Science Engineering. 147 (6), 04021016. <a href="https://doi.org/10.1061/(ASCE)IR.1943-4774.0001553">https://doi.org/10.1061/(ASCE)IR.1943-4774.0001553</a> </li><br /> <li>A.Y. Sheshukov, Gao, J., K.R. Douglas-Mankin, H. Yen. (2021) Observed Data Source used for Bias Correction Introduces Variability and Uncertainty to Downscaled Climate Projections for Hydrologic Modeling. Transactions of the ASABE. 64(2): 203-220. <a href="https://doi.org/10.13031/trans.14061">https://doi.org/10.13031/trans.14061</a>. </li><br /> <li>Orozco-Lopez*, E. and R. Muñoz-Carpena, R. 2021. Comparative non-Darcian modelling of subsurface preferential flow experimental observations in a riparian buffer. Trans. ASABE 64(5). <a href="https://doi.org/10.13031/trans.14559">doi:10.13031/trans.14559</a>.</li><br /> <li>Vazquez*, K.M, R. Muñoz-Carpena, M.D. Danyluk, A.H. Havelaar. 2021. Parsimonious mechanistic modeling of bacterial runoff to inform food safety management of agricultural water quality. Appl. Environ. Microbiol. 87(15): e00596-21. <a href="https://doi.org/10.1128/AEM.00596-21">doi:10.1128/AEM.00596-21.</a></li><br /> <li>Luquin*, E., M.A. Campo-Bescós, R. Muñoz-Carpena, R.L. Bingner, R.M. Cruse, H.G. Momm, R.R. Wells, J.Casalí. 2021. Evaluation of model prediction capacity of ephemeral gully temporal evolution in conservation tillage systems. Earth Surf. Process. Landf. 46(10):1909-1925. <a href="https://doi.org/10.1002/esp.5134">doi:10.1002/esp.5134</a></li><br /> <li>Guertault, L. G.A.Fox, D. Heeren, T. Hallihan and R Muñoz-Carpena. 2021. Quantifying the importance of preferential flow in a riparian buffer. Trans. ASABE 64(3):937-947. <a href="https://doi.org/10.13031/trans.14286">doi:10.13031/trans.14286</a>.</li><br /> <li>Orozco-López*, R. Muñoz-Carpena, B. Gao and G.A. Fox. 2021. High resolution pore-scale water content measurement in a translucent soil profile from light transmission. Trans. ASABE64(3):949-962.<a href="https://doi.org/10.13031/trans.14292">doi:10.13031/trans.14292</a>.</li><br /> <li>Medina M.*, R. Huffaker, R. Muñoz-Carpena and G. Kiker. 2021. An empirical nonlinear dynamics approach to analyzing emergent behavior of agent-based models. AIP Advances11:035133. <a href="https://doi.org/10.1063/5.0023116">doi:10.1063/5.0023116</a></li><br /> <li>Medina*, M., R. Huffaker, J.W. Jawitz, and R. Muñoz-Carpena. 2020. Seasonal dynamics of terrestrially sourced nitrogen influenced Karenia brevis blooms off Florida's southern Gulf Coast. Harmful Algae 98:101900.<a href="https://doi.org/10.1016/j.hal.2020.101900"> doi:10.1016/j.hal.2020.101900</a></li><br /> <li>Mompremier, R.*, Y. Her, G. Hoogenboom, K. Migliaccio, R. Muñoz-Carpena, Z. Brym, R. W. Colbert, and W. Jeune. 2020. Modeling the response of dry bean yield to irrigation water availability controlled by watershed hydrology. Agric. Water Manage. 243:106429. <a href="https://doi.org/10.1016/j.agwat.2020.106429">doi:10.1016/j.agwat.2020.106429</a></li><br /> <li>Nelson, N.G.*, R. Muñoz-Carpena, and E. Phlips. 2020. Parameter uncertainty drives important incongruities between simulated chlorophyll-a and phytoplankton functional group dynamics in a mechanistic management model. Env. Modeling & Soft. 129:104708. <a href="https://doi.org/10.1016/j.envsoft.2020.104708">doi:10.1016/j.envsoft.2020.104708</a>.</li><br /> <li>Alonso, A.*, R. Muñoz-Carpena, and D. Kaplan. 2020. Coupling high-resolution water level sensors and MODIS for mapping wetland historical hydroperiod at high temporal frequency. Remote Sensing of Environment 247:111807. <a href="https://doi.org/10.1016/j.rse.2020.111807">doi:10.1016/j.rse.2020.111807</a>.</li><br /> <li>Moreno-Cadena, L.P.*, G. Hoogenboom, M.J. Fisher, J. Ramirez-Villegas, S.D. Prager, L.A. Becerra Lopez-Lavalle, P. Pypers, M.S. Mejia de Tafur, D. Wallach, R. Muñoz-Carpena, S. Asseng. 2020. Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic model of cassava. Europ. J. Agronomy 115:126031.<a href="https://doi.org/10.1016/j.eja.2020.126031"> doi:10.1016/j.eja.2020.126031</a></li><br /> <li>Delforge, D.*, R. Muñoz-Carpena, M. Van Camp, M. Vanclooster. 2020. A parsimonious empirical approach to streamflow recession analysis and forecast. Wat. Resour. Res.56(2): e2019WR025771. <a href="https://doi.org/10.1029/2019WR025771">doi: 10.1029/2019WR025771</a></li><br /> </ol><br /> <p> </p><br /> <p><strong><span style="text-decoration: underline;">Thesis/Dissertation</span></strong>:</p><br /> <ol><br /> <li>Radcliff, Cory, "Quantifying the source and pathway of dissolved reactive phosphate in karst drainage of the Inner-Bluegrass" (2021). <em>Theses and Dissertations--Biosystems and Agricultural Engineering</em>. 81.</li><br /> <li>Nazari, Saeid, "Impact of preferential flow, source water connectivity, and agricultural management practices on sediment and particulate phosphorus dynamics in midwestern tile-drained landscapes" (2021). <em>Theses and Dissertations--Biosystems and Agricultural Engineering</em>. 82.</li><br /> <li>Nayeb Yazdi, M., 2020. Understanding the role of scale in assessing sediment and nutrient loads from Coastal Plain watersheds delivered to the Chesapeake Bay, Ph.D. Dissertation, Virginia Tech, p. 181, Advisor: <strong>D. Sample</strong>.</li><br /> <li>Jahan, K. J., 2021. Effectiveness of Roadside Best Management Practices (BMPs) on Maintaining Stormwater Quality Through Monitoring and Modeling. Doctoral Dissertation submitted <strong>to </strong>University of Rhode Island (Advisor: <strong>S. M. Pradhanang</strong>)</li><br /> <li>Tamanna, M, 2021 Optimization of Riparian Zone Nitrogen and Phosphorus Management through the Development of Riparian Model Doctoral. Dissertation submitted to University of Rhode Island (Advisor: <strong>S. M. Pradhanang</strong>)</li><br /> </ol><br /> <p> </p><br /> <p><span style="text-decoration: underline;"><strong>Proposals</strong></span>:</p><br /> <ol><br /> <li>Impact of Broiler Litter Application Method on Phosphorus Loss in Leachate. AAES Agriculture Research Enhancement and Seed (ARES) funding program. Grant amount $50,000 (PI: Jasmeet Lamba)</li><br /> <li>Understanding Preferential Flow Patterns in No-Till Manured Pastures Using Dye Tracer and X-Ray CT Image Analysis. USGS-AWRRI. Grant amount $5,000 (Co-PI Lamba)</li><br /> <li>Leveraging Machine Learning for Sustainable Water and Nutrient Management Across Agro Climatic Zones. USDA-NIFA. Grant amount $650,000 (Co-PI Lamba)</li><br /> <li>A Transdisciplinary Approach to Secure the Safety of the Food Supply System While Protecting the Environment. USDA-NIFA. Grant amount $10 million. (Co-PI Lamba)</li><br /> <li> “A coupled natural-human framework for risk assessment of coastal communities from land-use and climate change”, National Academy of Science – Restore, 2020-2023, $1,110,000, (Co-PI Kalin and Kumar).</li><br /> <li> “Coupling SWAT and WetQual for Improved N, P, and C Processing in Wetland Dominated Agricultural Watersheds”, USDA-NIFA, 2020-2024, $499,932 (PI Kalin).</li><br /> <li> “Ecohydrology and Watershed Modeling”, US-EPA, 2020-2021, $25,000 (PI Kalin).</li><br /> <li>FACT: Interactive Deep Learning Platform and Multi-source Data Integration for Improved Soil Moisture Forecasting (PI Kumar, Co-PIs: W. Lee, and I. Rangwala). Funded by USDA-NIFA. Total support: $500K, Project period: Sept. 2020 to Aug. 2023.</li><br /> <li>Investigation of soil moisture predictability on sub-seasonal to inter-annual time scales (PI Kumar). Funded by AAES AgrSEED program, Total support $50K; Project period: Oct. 2019 to Sept. 2021.</li><br /> <li>Fox, J., <strong>Ford, W.,</strong> Malzone, J., Armstead, M. GP-GO: The Appalachian SUCCESS Program: Strengthening students classified as Underrepresented in STEM by inspiring Confidence, Curriculum and Enriching Sensing Skillsets. NSF GP-GO. $314,807. <span style="text-decoration: underline;">Role: Co-Investigator. </span>September 2021-August 2024.</li><br /> <li><strong>Ford, W.I.</strong> RII Track-4: Elucidating controls of sediment phosphorus delivery to tile-drains. NSF-EPSCoR, RII-4, $226,757. Role: <span style="text-decoration: underline;">Principal Investigator</span>. January 2021 to December 2022. </li><br /> <li><strong>Ford, W.I.,</strong> Fox, J., Sama. M. Impact of regenerative stream design on water and nitrogen budgets at reach to watershed scales. USDA-AFRI, $750,000. <span style="text-decoration: underline;">Role: PD.</span> <em>Submitted</em></li><br /> <li>Messer, T., <strong>Ford, W.</strong>, Bartlet-Hunt Shannon. Implications of Microplastic Contributions from Biosolid Applications to the Nitrogen Cycle in Agroecosystems. USDA-AFRI, $750,000. <span style="text-decoration: underline;">Role: Co-PD</span>, <em>Submitted.</em></li><br /> <li><strong>Easton, Z.M.</strong>, D.R. Fuka, and R.R. White. Developing and evaluating rapidly deployable inexpensive weather, soil moisture, shock, and streamflow sensors to aid the monitoring, inspection, and rehabilitation of aging dams. USDA-Cooperative Agreement. $75,000. June 2021-Nov 2021.</li><br /> <li><strong>Easton, Z.M.</strong> and D.R. Fuka. Integrating the SWAT Model into the MINT Framework. DARPA-USC $64,000. June 2021-Nov 2021</li><br /> <li>Collick, A.S., <strong>Z.M. Easton</strong>, and R. Bryant. UMES Stormwater Management Research Facility: Investigating nutrient and sediment reduction from poultry house stormwater drainage systems. USDA NIFA $399,000. Sept 2020-Aug 2022.</li><br /> <li><strong>Easton, Z.M</strong>. A Systematic Review of Chesapeake Bay Climate Change Impacts on Tidal and Near Tidal BMPs. NOAA-CBP $73,400. Dec 2020-Sept 2021.</li><br /> <li><strong>Easton, Z.M.</strong> A Conservation Effects Assessment Project (CEAP) Watershed Assessment Study: A collaboration between the University of Vermont, Virginia Tech, the Natural Resources Conservation Service, and the Agricultural Research Service. USDA CEAP $123,000. Oct 2020-Sept 2022.</li><br /> <li>Flood Reduction Potential of Urban Forests in Virginia Beach: Development of urban watershed models that improve calculation of evapotranspiration and soil moisture to assess the flood reduction benefits of urban forests in coastal Virginia. Amount: $92,276. PIs:<strong> D. Sample</strong>, D. McGlauglin, Y. Shao, 1/1/2020-10/31/2022. Sponsor: City of Virginia Beach, The Nature Conservancy.</li><br /> <li>Bluestone River, Mountain Run, and Lewis Creek PCB TMDLs: Data Analysis and Modeling, and TMDL Development Statement of Work, VA Department of Environmental Quality, $649,950, 06/01/2019 - 01/31/2022, PI: <strong>B. Benham</strong>.</li><br /> <li>TMDL Implementation Plan Development for Buffalo River (Amherst and Nelson Counties) Statement of Work, VA Department of Environmental Quality, $27,155, 07/01/2019 - 10/30/2020, PI: <strong>B. Benham</strong>.</li><br /> <li>TMDL Implementation Plan Development for McClure River (Dickenson County), VA Department of Environmental Quality, $21,660, 06/01/2019 - 05/31/2020, PI: <strong>B. Benham</strong>.</li><br /> <li>White, R., D.R. Fuka, E. Feuerbacher, <strong>Z.M. Easton</strong>. Collaborative Research: CPS: Medium: Greener Pastures: A pasture sanitation cyber physical system for environmental enhancement and animal monitoring. NSF CPS (Cyber-Physical Systems). $998,232. June 2021-May 2024.</li><br /> <li>Designing ESD for Climate Change for Increased Resiliency: Assessing the impact of climate change on hydrology, upland environmental site design (ESD) practices and downstream channel stability. Amount: $107,250. PIs: <strong>D. Sample</strong>, T.W, Thompson, 7/1/2021-12/31/2022. Sponsor: Chesapeake Bay Trust (thru Tetratech, Inc.)</li><br /> <li>Savage, B., <strong>Pradhanang, S. M</strong>., Boving, T. Mapping Bedrock and Saltwater Intrusion in Rhode Island, USGS $90,000 (09/2021-08/2022)</li><br /> <li>Kayastha-<strong>Pradhanang, S</strong>, Kumar, R, and Rashid T, Floating Treatment Wetland System (FTWS) - Sustainable green technology to remediate polluted surface water bodies in the COVID 19-era<strong><em>,</em></strong> Asia-Pacific Network $78,000 (09/2021-08/2023)</li><br /> <li><strong>Pradhanang, S. M</strong>., Boving, T., and Savage, B. The Rhode Island Water Resources Board (RIWRB) and University of Rhode Island (URI) Statewide Water Withdrawal Data Enhancement and Database Development Project. RIWRB-USGS 197,488 (10/20-09/22)</li><br /> <li><strong>Pradhanang, S. M</strong>., and Boving T., Harmful Algal Blooms (HABs): Treatment Optimization Protocol (TOP) Development, RI Department of Health $34,980 (05/20-08/20)</li><br /> <li> J. Aguilar, A. Sheshukov, B. Golden, L. Haag, D. Devlin. Collaborative Research on Cotton Production in Thermo-limited Regions of the High Plains. Ogallala Aquifer program, USDA-ARS. $300,000. (09/2020 - 08/2025)</li><br /> <li>T. Moore, A. Sheshukov, L. Shamir, D. Flippo. Integrated data science - mechanistic modeling framework to predict cyanoHABS in contrasting freshwater systems. USGS $249,776 (10/2020-09/2023)</li><br /> <li>T. Franti, A. Sheshukov, T. Cruse, B. Gelder, J. Lory. NRCS Ephemeral Gully Erosion Planning Grant PHASE 2: A Regional Assessment of High-Risk Areas for Ephemeral Gully Formation. USDA-NRCS $344,538 (09/2021-12/2023)</li><br /> </ol><br /> <p> </p><br /> <p><strong><span style="text-decoration: underline;">Reports:</span></strong></p><br /> <ol><br /> <li>National Academies of Sciences, Engineering, and Medicine. 2020. Review of the New York City Watershed Protection Program. Washington, DC: The National Academies Press. doi: <a href="https://doi.org/10.17226/25851">https://doi.org/10.17226/25851</a> (<strong>Boyer, Easton, Pradhanang</strong>)</li><br /> <li><strong>Easton, Z.M.</strong>, K., Stephenson, A. Collick, P.M. Fleming, E. Kellner, J. Martin, M. Ribaudo, and G. Shenk. 2020. Increasing Effectiveness and Reducing the Cost of Non-Point Source Best Management Practice Implementation: Is Targeting the Answer? STAC Publication Number 20-002.</li><br /> <li><strong>Sample, D.J.</strong>, Nayeb Yazdi, M., Wang, X., and Shahed Behrouz, M., 2021. Characterization of Runoff Water Quality, Treatment in Noncomforming Ponds, and Modeling Implications for the City of Virginia Beach, Virginia, Final Report, p. 170.</li><br /> <li>Kline, K., Moneymaker, J., & <strong>Benham, B</strong>. 2020. A Water Quality Improvement Plan to Reduce Bacterial Contamination and Sediment Loads in Buffalo River located in Amherst County, Virginia.: A Water Quality Improvement Plan to Reduce Bacterial Contamination and Sediment Loads in Buffalo River located in Amherst County, Virginia. Virginia Department of Environmental Quality.</li><br /> <li><strong>Pradhanang, S. M</strong>., Boving, T.B, Brown, R and Jahan, K., 2021. Effectiveness of roadside best management practices in managing water quality (submitted to the Rhode Island Department of Transportation).</li><br /> <li><strong>Pradhanang, S. M</strong>., Boving, T.B and Panthi, J., Ismail, M., and Shrestha, S., 2020. Assessing Saltwater Intrusion under Extreme Storm Conditions for Coastal Aquifers (submitted to the Rhode Island Housing and Urban Development).</li><br /> </ol><br /> <p> </p><br /> <p><span style="text-decoration: underline;"><strong>Book Chapters</strong></span>: </p><br /> <ol><br /> <li><strong>Pradhanang, S. M</strong>. and Jahan*, K., 2021 Urban Water Security for Sustainable Cities in the Context of Climate Change. <em>In</em> Pandey et al. eds <em>Water, Climate Change, and Sustainability</em>, Wiley Publications.</li><br /> <li><strong>Pradhanang, S.M</strong>., and Jahan*, K., 2021 Structural Best Management Practices and Watershed Management. <em>In Encyclopedia of the UN Sustainable Development: Clean Water and Sanitation. </em> Springer Publications</li><br /> <li><strong>Pradhanang, S. M.,</strong> and Tamanna*, M. 2020 Water Management: South Asia. <em>In</em> Wang, Y. ed., 2020. <em>Fresh Water and Watersheds</em>. CRC Press</li><br /> </ol><br /> <p> </p><br /> <p><span style="text-decoration: underline;"><strong>Conference presentations</strong></span>: </p><br /> <ol><br /> <li>Workshop for the Association of Clean Water Administrators on Natural Language Processing for TMDL review (Texas A&M- Kumar)</li><br /> <li>3-introductory and advanced workshops on watershed/water quality modeling (Texas A&M- Srini</li><br /> <li>25 Stream restoration and green stormwater infrastructure workshops (Texas A&M- Jaber)</li><br /> <li>Kmetz, J., Aiken, R., Young, K., Pradhanang, S.M. Allen, L.,2021. Submarine Groundwater Discharge (SGD) resolved at high resolutions in Rhode Island Coastal Estuaries, Ninigret and Green Hill Ponds, using small Unmanned Aircraft System (sUAS) deployed Thermal Infrared (TIR) imaging, UCOWR, NWRI June 10, 2021 </li><br /> <li>Young, K., Pradhanang, S.M., Kmetz, J., Aiken,R., Allen, L., 2021, Analysis of Submarine Groundwater Discharge (SGD) temporal dynamics in Northern Ninigret Pond, Coastal Rhode Island using Radon-222 and small Unmanned Aircraft Systems (sUAS) deployed Thermal Infrared (TIR) imaging, UCOWR, NWRI June 10, 2021 </li><br /> <li>Young, K., Pradhanang, S.M., 2021.Small Unmanned Aircraft (sUAS) deployed thermal infrared (TIR) imaging for environmental surveys with implications in submarine groundwater discharge (SGD): methods, challenges, and novel opportunities. UCOWR, NWRI June 10, 2021</li><br /> <li>Pradhanang, S.M., Campbell, A. and Kouhi, S., 2020, December. Streamflow High Spells Analysis to Evaluate Flood Risks and Severity. In <em>AGU Fall Meeting Abstracts</em> (Vol. 2020, pp. GC084-0005).</li><br /> <li>Pradhanang, S. M., Meisinger, E., Kirby, K., and Kmetz, J., 2020. Water Treatment Innovation Using Floating Wetland Islands, North American Lake Management Society, November 18, 2020.</li><br /> </ol>Impact Statements
Date of Annual Report: 11/09/2022
Report Information
Period the Report Covers: 10/01/2021 - 09/30/2022
Participants
Participants:In person attendees (7):
● Fouad Jaber - Texas A&M
● Adel Shirmohammadi - University of Maryland
● Rafael Muñoz-Carpena - University of Florida
● Jasmeet Lamba - Auburn University
● Bill Ford - University of Kentucky
● Arun Bawa - Texas A&M
● Soni Pradhanang - University of Rhode Island
Virtual Attendees (4):
● Aleksey Sheshukov - Kansas State University
● David Sample - Virginia Tech
● Latif Kalin - Auburn University
● Elizabeth Boyer - Penn State University
Brief Summary of Minutes
The annual meeting was held in Marriott Marquis Hotel in Houston, TX on July 17, 2022, a day prior to the start of the ASABE Annual International Meeting. Discussion topics of the meeting focused on addressing S1089 objectives, presenting accomplishments, and identifying potential tasks and/or research products delivered by the members of the Multistate Exchange Group. Meeting participants submitted state reports, highlighted accomplishments in 2021-2022 year, and posed future goals. All presentations were carried out either in-person or via Zoom.
Committee chair, Dr. Rafael Muñoz-Carpena, overviewed the previous project on TMDL and expressed that the project was successful and focused on process level models and problem centric solutions and recommendations. He concluded that coherence and success of journal collection can be important for multistate activities. Dr. Soni M Pradhanang presented an overview and history of the S1089 project, reporting requirements, and results of last year's meeting.
Project members, in-person and virtual, had extensive discussions on the special collection introduced during 2021 meeting. All participants participated in selection of overarching topic, research subtopics, potential journals, and individual papers. Dr. Adel Shirmohammadi overviewed the efforts of previous multistate projects that resulted in special collections. Journal of Environmental Management was selected as a top priority journal for this collection. Proposals for the special collection will need to be completed and submitted to the journal for consideration in 2022. Below is a tentative list of proposed papers, responsible authors, and brief overviews.
Cover (synthesis) paper: Advances and gaps in BMPs (agricultural, urban, forestry, etc.) across critical landscapes and scales (collection editor(s))
- Using integrative metrics and data sources to characterize additive ecosystem services provided by urban stormwater management (McMillan, Jaber, Birgand, Saurav)
- This is a framework paper with the first part describing the key paradigms, barriers, opportunities (where are they placed, how are they designed, what is the goal, maintenance, etc.). Case study examples that integrate at least two dimensions (social, economic, biophysical) across scales from neighborhood or watershed.
- Advances and gaps in the Monitoring of BMPs: a critical review of methods to enhance BMP understanding, effectiveness, modeling and design (François Birgand, Bryan Maxwell, Randall Entheridge, Tiffany Messer, Jaber, Sheshukov, McMillan, Young, Hunt, Burchell, Pradhanang, Saurav)
- Progress Toward Achieving Nutrient and Sediment Reduction Goals Through Watershed Management: A regional review (Beth Boyer, Soni Pradhanang, Sanjiv Kumar, Zach Easton, Kevin Wagner, Shreeram Inamdar, Aleksey Sheshukov, Philippe Vidon, Bill Ford, Jasmeet Lamba)
- Limitations and uncertainties in predicting mitigation of runoff contaminants with vegetation buffers at the field and watershed scale (Soni Pradhanang, Rafa Muñoz-Carpena, Marzia Tamanna, Arthur Gold, Philippe Vidon, Shreeram Inamdar, Kelly Addy)
- Critical Spatio-Temporall Scales for BMP design: Systems thinking applied to BMP development and management (Rafa Muñoz-Carpena, Adel Shirmohammadi, Jasmeet Lamba, Saurav, Bill Ford, Aleksey Sheshukov)
- Critical BMP physical process scales and human scales; Critical BMP human scales: Data, Management Action, Lifecycle and Maintenance, Societal Benefit; Lag time in BMP response and policy implication; Gaps between scales
- Alternative water resources in the context of climate change (Adel Shirmohammadi, Fuad Jaber, Masoud Negahban-Azar, Hubert Montas)
- Stress on Water Resources under Climate and Future Climate Scenarios; Rain water harvesting; Reusable water (e.g., WTP discharge, Food processing units, desalination, etc); Economic, Social, and policy (e.g., FSMA -Food Safety Modernization Act); Feasibility of Alternative Water Resources.
- Legacy nutrients and sediments impacting the efficiency of BMP performance: Model assessment and improvement needs (Jasmeet Lamba)
- A spatial framework for detecting water quality and targeting BMPs in agricultural watersheds (Kevin Wagner)
- Role of AI/Machine Learning in identifying hotspots and allocation of BMPs (Saurav Kumar)
Time and location of the next annual meeting was discussed and several options are presented below. The leadership group will meet during the year and decide on the potential location of next year’s annual meeting:
- UNL at Lincoln, NE to tag along with next year’s ASABE conference
- Iowa State University at Ames, IA as it is close to next year’s ASABE conference
- University of Puerto Rico - Fouad and Soni will inquire about adding participants from there
- Auburn University at Auburn, AL
- Kansas State University at Manhattan, KS to tag along with next year’s ASABE conference
Elected officers (2022-2023):
- Secretary: Latif Kalin (Auburn U)
- Vice Chair: Aleksey Sheshukov (KSU)
- Chair: Fouad Jaber (Texas A&M)
Past Chairs:
- Rafa Munoz-Carpena (2020-2022)
- Soni Pradhanang (2020-2021)
Accomplishments
<p><strong>Accomplishments: </strong></p><br /> <p>The main focus of this project is to improve the abilities to better understand and predict pollutants and evaluate the effectiveness of best management practices (BMPs) on critical landscapes at the watershed scale. This includes hillslope soil health, water quality of streams and waterbodies, environmental benefits of mitigation practices and cost effectiveness of BMPs. The objectives will be met through the following activities: monitoring at sub-watershed scales, modeling at larger spatial scales, and analyzing uncertainty in both monitoring and modeling efforts.</p><br /> <p><strong>Short-term Outcomes:</strong></p><br /> <p>Project activities from October 2021 to September 2022 are summarized in the following state reports:</p><br /> <p><span style="text-decoration: underline;">Texas A&M (F. Jaber)</span></p><br /> <p>Texas A&M developed TMDL Report Selection Tool (http://Occviz.com/tmdl), a tool that uses natural language processing to understand linkages between modeling tools and impairments. In addition, we developed BMP-Net a deep neural network based on PlanetScope data to identify vegetative and structural BMPs. We worked with USEPA to develop national scale water quality models at HUC8, 10, 12, and 14 digits for the entire U.S and a GIS Tool for determining flood prone areas in Denton county. In collaboration with Nature Conservancy we developed Green stormwater infrastructure prioritization maps for Dallas flooding, a watershed protection plan for Rowlett Creek, Plano, TX, estimated impact of riparian cover on critical shear stress, and developed and implemented HAWQS.</p><br /> <p><span style="text-decoration: underline;">Auburn University (J. Lamba, L. Kalin, S. Kumar)</span></p><br /> <p>A hybrid biophysical-Artificial Intelligence (Physics-AI) model is developed from the first principle to estimate streamflow forecast errors at ungauged locations, improving the forecast's reliability. The first principle refers to identifying the need for the hybrid Physics-AI model, determining physically interpretable and machine identifiable model inputs, followed by the Deep Learning (DL) model development and its evaluations, and finally, a biophysical interpretation of the hybrid model. A very high-resolution National Water Model (NWM) forecast, developed by the National Oceanic and Atmospheric Administration, serves as the biophysical component of the hybrid model. Out of 2.7 million daily forecasts, less than 1% of the forecasts can be verified using the traditional hydrological method of comparing the forecast with the observations, motivating the need for the AI technique to improve forecast reliability at millions of ungauged locations. An exploratory analysis followed by the Classification and Regression Tree analysis successfully determines the dependency of the forecast errors on the biophysical attributes, which along with the NWM forecast, are used for the DL model development. The hybrid model is evaluated in a sub-tropical humid climate of Alabama, and Georgia states in the United States. Long-term streamflow forecasts from zero-day lead to 30-day lead forecasts are archived and analyzed for 979 days (Dec. 2018 to Aug. 2021) and 389 USGS gauging stations. The forecast reliability is assessed as the probability of capturing the observations in its ensemble range. As a result, the forecast reliability increased from 21(±1) % in the NWM only forecasts to 82(±3) % in the hybrid Physics-AI model.</p><br /> <p><span style="text-decoration: underline;">University of Kentucky (B. Ford) </span></p><br /> <p>Research at the University of Kentucky has focused on source, fate and transport of contaminants in karst and tile-drained landscapes, as well as river-tributary confluences. Seven graduate students have worked on the project (5 contributing during the 21-22 reporting period). Research in tile drained landscapes has focused on monitoring and modeling of sediment transport in subsurface drainage including ongoing collaborations with the USDA-ARS SDRU in Ohio and USDA-ARS NSERL in Indiana. Deliverables include a peer-reviewed manuscript (Nazari et al., 2022) and a new proposal funded by H2Ohio (ODA) in collaboration with the USDA-ARS SDRU. Research in karst watersheds of central KY has focused on impacts of karst hydrologic and biogeochemical processes on nitrate and dissolved reactive P loadings at the watershed-scale. During the reporting period, two students have worked on this topic, with one (McGill) receiving his MS degree. An NSF BPE proposal was funded, and an NSF EPSCOR proposal was submitted to support students, monitoring and modeling initiatives related to this topic. Two papers (Radcliff et al., 2021 and Husic et al., 2022) were published on this topic. Research on fate and transport of contaminants in streams has focused on aquatic vegetation characterization using UAVs, impacts of stream restoration on hydrology and water quality in karst landscapes, accumulation of PFAS in benthic sediments, and fate and transport of sediments and nutrients in river-tributary confluences. During the reporting period, three students have been supported on this topic (with one graduate), and one peer-reviewed paper published (Riddle et al., 2022).</p><br /> <p> </p><br /> <p><span style="text-decoration: underline;">University of Rhode Island (S. Pradhanang)</span></p><br /> <p>Water use and withdrawal research focused on developing private water suppliers' water use database and web interface for the State of. Rhode Island. The research is a part of USGS’s water use database research program. In collaboration with the EPA and RI Water Resources Board, agricultural water uses, and allocation optimization model is being developed for southern RI. The Electrical Resistivity survey done in combination with other geophysical methods are used to study saltwater intrusion. The NASA EPSCoR funded grant to study methane and greenhouse gasses in marshes and groundwater aims at understanding whether deep groundwater functions as storage or sink of potent greenhouse gasses. Various stormwater basins within RI Roger Williams Park are monitored to study various pollutants including algae in water. The USGS supported State map project focuses on mapping the surface geology statewide and focuses on specific areas at a smaller scale for mapping additional layers. RIGS, with partners in the state, plans to develop a hydrogeologic model at the watershed scale to inform statewide planning for water resources, flood preparation and response, and drought monitoring.</p><br /> <p><span style="text-decoration: underline;">Kansas State University (A. Sheshukov)</span></p><br /> <p>The activities were centered over development of w/q models at the watershed, hillslope, and reservoir scales. We developed and calibrated a SWAT model for the Prairie Band Potawatomi Nation tribal area within the Soldier Creek watershed north of Topeka, KS. The model accounts for specific ag cropland and rangeland practices utilized within the tribal land that were obtained with close partnership with KDHE, tribal community, and local residents. Based on the results we developed a plan of BMP implementation for water-quality improvement. We installed a multi sensor stationary buoy in Marion Reservoir in Kansas for detecting valuable blue-green algae characteristics instrumented with in-situ sensors for near continuous measurements of water temperature, specific conductance, dissolved oxygen, pH, dissolved organic matter, turbidity, light penetration and chlorophyll and phycocyanin fluorescence. We studied the benefits (production and environmental) of cotton production in western Kansas by collecting and analyzing data on three cotton fields. The updated crop coefficient function was developed to better reflect thermo-limited conditions of southern Kansas. We analyzed crop field susceptibility to ephemeral gully erosion by collecting data from various sources (LiDAR, historic imagery, drones, etc.) and using geospatial and machine learning approaches. Novel approaches to detection of gully formations from aerial images were developed and applied in a HUC-12 area.</p><br /> <p><span style="text-decoration: underline;">University of Maryland (A. Shirmohammadi)</span></p><br /> <p>Work was focused on post model outcome development; interfacing SWAT model with agent-based model; identifying hotspots using genetic algorithms; social acceptability and cost effectiveness of modeling results on NPS pollution hotspots. We looked at the importance of picking BMPs based on hotspot identification rather than random allocation. The studies at Warner Creek Watershed in the Monocracy River Basin and Choptank River Watershed in the Coastal Plain of Maryland were on modeling based on available long-term monitoring data, while multicriteria decision analysis framework was developed for water reuse and irrigation economics in agriculture.</p><br /> <p><span style="text-decoration: underline;">University of Florida (R. Muñoz-Carpena, Y. Her)</span></p><br /> <p>The accomplishments from the Florida team are about BMP adoption in Florida (Dr. Young Gu Her) and analysis of the effectiveness and long-term effects of a commonly adopted BMP (vegetative filter strips) form surface runoff pollution control, including the regulatory implications (Dr. Muñoz-Carpena). We also study large-scale hydrological, water quality and ecological impacts of agricultural development of smallholders in Africa (Laikipia, Kenya) and adoption of BMP (reduced tillage, soil management) to assess the distant ecological degradation of the dry African savanna introduced by these developments (Dr. Muñoz-Carpena).</p><br /> <p>Dr. Muñoz-Carpena serves as Chair of this Hatch Project for this year and will coordinate the reporting and efforts. Under the organization of this group, we will submit and develop a special journal collection on the topic of "Advances and gaps in agricultural and urban BMPs across critical scales” that will be submitted to a top-tier journal in the specialty.</p><br /> <p><span style="text-decoration: underline;">Virginia Tech (D. Sample)</span></p><br /> <p>Watershed research at Virginia Tech is focused upon stormwater management, watershed modeling, and well water quality. Stormwater research at Virginia Tech is currently focused on 1) monitoring runoff from urban catchments with homogenous land use, and using these data for calibration of hydrologic/water quality models; 2) developing integrated urban hydrologic/sediment transport models of urbanized catchments using SWMM and HEC-RAS with and without best management practices (BMPs) to assess which projects and criteria enhance stream stability. Watershed modeling and management is currently focused on 1) quantifying nitrogen removal rates from spring bioreactors treating legacy nitrogen in groundwater, specifically the effect of nitrogen loading and flow permanence and variability on removal rates. This includes working with partners at Virginia Dept of Environmental Quality (DEQ) to develop a $1 million pilot program using bioreactors to treat legacy nitrogen; 2) integrating real-time animal/environmental sensing using IoT sensors and modeling with autonomous robotics to manage pasture-based manure nutrients; 3) developing integrated agroecosystem models to evaluate the impacts of climate change, best management practices, uncertainty, and management actions on natural resources and farm viability. Twelve journal articles (10 published and 2 in press), 1 dissertation, and 6 proposals were produced and/or awarded, and 6 presentations were made during 2021-22. Ten students were mentored during this period.</p><br /> <p><span style="text-decoration: underline;">University of Georgia (G. Vellidis)</span></p><br /> <p>Research at the University of Georgia focused on developing and evaluating BMPs for the traditional cotton-peanut-corn crop rotation used in the agricultural areas of the state. All crops were planted into a rye cover crop using strip tillage following burndown with glyphosate. Three irrigation × three fertilization treatments were evaluated in the corn and cotton plots. These consisted of two irrigation and two fertilization BMPs compared to standard practice. Fertilization BMPs that were evaluated include using fertigation to apply side-dress N on corn and cotton and using UAV-derived NDVI to apply side-dress N on cotton. Irrigation scheduling BMPs include using soil moisture sensors and ET-based scheduling tools. Since N fertilizer is not applied to peanut during the growing season, nine irrigation treatments were evaluated in peanut. These included seven irrigation scheduling BMPs compared to a rainfed treatment and a farmer-standard irrigation scheduling practice. Data collected include continuous soil moisture measured with matric potential type soil moisture sensors and soil nitrogen and crop biomass measured at regular intervals for the corn and cotton crops. Biomass included dry weight of separate plant tissues as well as Total Kjeldahl Nitrogen (TKN) and yield. Soil samples were analyzed for Nitrate, Ammonium, and TKN.</p><br /> <p><span style="text-decoration: underline;">Purdue University (S. McMillan)</span></p><br /> <p>Our project goals are to better understand the mechanisms for effective agricultural conservation practices at the site and watershed scales. This work focuses on identifying environmental controls using experiments and monitoring data to incorporate knowledge in management and restoration strategies. We have multiple projects to address this in wetlands, floodplains, and infield practices on working farms. Our work in wetlands (USDA NIFA) and floodplains (NSF) focuses on maximizing nutrient retention while mitigating the deleterious climate effects of CH<sub>4</sub> and N<sub>2</sub>O release. In paired watershed studies (EPA), we are working at the HUC-12 scale to link changes in stream chemistry and nutrient loading to land use practices. Together this work will help generate models that are informed by ecosystem processes as we design restoration practices from site to watershed scales that are optimized to improve water quality through nutrient retention, minimize climate impact by reducing GHG emissions, and maximize agricultural productivity.</p><br /> <p><span style="text-decoration: underline;">University of Delaware (S. Inamdar)</span></p><br /> <p>Our overall goal is to better understand the concentrations, forms, and fluxes of nitrogen (N) in watersheds and how land use activities and BMPs affect this pollutant. Currently we have three emphasis areas where we are studying the fate and transport of N. These three focus areas are: (1) the effect of milldams and similar barriers on the concentrations, forms, fate and transport of N in stream and riparian zones; (2) the concentrations, fate and transport of N associated with suspended legacy sediment transport in watersheds; and (3) the concentrations and fate of N in restored stream floodplains. We have multiple NSF and USDA AFRI projects addressing these areas of research.</p><br /> <p><span style="text-decoration: underline;">Oklahoma State University (K. Wagner)</span></p><br /> <p>Watershed research at the Oklahoma Water Resources Center focuses on evaluating implementation of novel regenerative agricultural BMPs and virtual fencing. Through small watershed scale monitoring of water quality and quantity, we are working to inform watershed scale modeling and provide insights into processes that determine pollutant fate and transport and the role these novel BMPs play in pollutant reduction. With funding from USDA-NIFA, 12 small watershed sites were installed this year in Altus, Oklahoma to evaluate the benefits of regenerative agriculture practices in cotton production systems. Samples were collected from 8 runoff events this project period. With funding from OSU’s Thomas E. Berry Professorship, monitoring of runoff from 10 small watersheds at the Cross Timbers Experimental Range continued, helping improve understanding of how natural sources and conventional grazing practices impact grazing land water quality. 104 samples were collected over 17 events this project period. Finally, with funding from EPA, 2 paired watersheds were installed this year to evaluate the water resource benefits of using virtual fencing to improve grazing management. 33 samples were collected over 13 runoff events this project period. This first year, continuous grazing is being implemented at all sites to serve as a baseline for evaluation. In year 2, virtual fencing will be used to implement rotational grazing and riparian protection.</p><br /> <p> </p><br /> <p><strong>Outputs: </strong></p><br /> <p>Publications, conferences, reports and thesis:</p><br /> <p>Journals: 75; Thesis/Dissertations: 8; Proposals: 27</p><br /> <p> </p><br /> <p><strong>Impacts: </strong></p><br /> <p><strong>Activities:</strong> The technical committee and the officers met virtually every other month to discuss project objectives and plans for the annual meeting.</p>Publications
<p> </p><br /> <ol><br /> <li>Nazari, S., Ford, W.I., King, K. 2022. Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems. <em>Agricultural Water Management.</em> 269: 107641. https://doi.org/10.1016/j.agwat.2022.107641. </li><br /> <li>Riddle, B., Fox, J., Mahoney, D. T., Ford, W., Wang, Y., Pollock, E., Backus, J. 2022<em>.</em> Investigation of carbon and nitrogen stable isotope tracers (non)conservativeness for sediment fingerprinting. <em>Science of the Total Environment</em>. 817: 152640. https://doi.org/10.1016/j.scitotenv.2021.152640. </li><br /> <li>Radcliff, C., Ford, W.I., Nazari, S. Sheppard, C. 2021. Impact of water source dynamics on dissolved reactive phosphorus loadings in heterogeneous karst agroecosystems with phosphatic limestones. <em>Hydrological Processes</em>. 35(11): e14422. <a href="https://doi.org/10.1002/hyp.14422">36Thttps://doi.org/10.1002/hyp.14422</a>36T. </li><br /> <li>Husic, A., Fox, J., Al Aamery, N., Ford, W., Pollock, E., Backus, J. 2021. Seasonality of recharge drives spatial and temporal nitrate removal in a karst conduit as evidenced by nitrogen isotope modeling. <em>JGR Biogeosciences.</em> e2021JG006454. <a href="https://doi.org/10.1029/2021JG006454">https://doi.org/10.1029/2021JG006454</a>. </li><br /> <li>Shahed Behrouz, M.S., Yazdi, M.N., Sample, D.J., 2022. Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff. J. Environ. Manage. 317, 115412. https://doi.org/10.1016/j.jenvman.2022.115412</li><br /> <li>Shahed Behrouz, M. S., Yazdi, M. N., Sample, D. J., Scott, D., and Owen, J. S., 2022. What are the relevant sources and factors affecting event mean concentrations (EMCs) of nutrients and sediment in stormwater? Science of the Total Environment, 828, 154368. https://doi.org/10.1016/j.scitotenv.2022.154368</li><br /> <li>Alamdari, N., Claggett, P., Sample, D., Easton, Z., and Nayeb Yazdi, M., 2022. Evaluating the joint effects of climate and land use change on runoff and pollutant loading. Journal of Cleaner Production, 330, 129953, doi:10.1016/j.jclepro.2021.129953 </li><br /> <li>Sangster, S., Gruver, M., Lacerda, L., Perry, C., Washington, B., Vellidis, G. 2021. Evaluation of irrigation and fertilization strategies to improve irrigation and nitrogen water use efficiencies in cotton. 2021 ASA, CSSA, SSSA International Annual Meeting, 08 November 2021, Salt Lake City, UT, USA, <a href="https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/136430">https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/136430</a> </li><br /> <li>Vellidis, G., Butts, C., Gallios, I., Ortiz, B. 2021. CropFIT - an integrated SmartIrrigation mobile app for corn, cotton, peanut, and soybean. 2021 ASA, CSSA, SSSA International Annual Meeting, 08 November 2021, Salt Lake City, UT, USA, <a href="https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135167">https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135167</a></li><br /> <li>Gallios, I., Butts, C., Perry, C., Vellidis, G. 2021. Making Irrigator Pro and easier to use irrigation scheduling tool. 2021 ASA, CSSA, SSSA International Annual Meeting, 08 November 2021, Salt Lake City, UT, USA, <a href="https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135255">https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135255</a> </li><br /> <li>Shrestha, S.G. and Pradhanang, S.M., 2022. Optimal selection of representative climate models and statistical downscaling for climate change impact studies: a case study of Rhode Island, USA. <em>Theoretical and Applied Climatology</em>.</li><br /> <li>Sharma, S., Talchabhadel, R., Nepal, S., Ghimire, G., Rakhal, B., Panthi, J., Adhikari, B., Pradhanang, S. M., Maskey, S., and Kumar, S., 2022<em>.</em> Increasing risk of cascading hazards in the central Himalayas. <em>Nat Hazards</em>. <a href="https://doi.org/10.1007/s11069-022-05462-0">https://doi.org/10.1007/s11069-022-05462-0</a></li><br /> <li>Panthi, J., Pradhanang, S.M., Nolte, A. and Boving, T.B., 2022. Saltwater intrusion into coastal aquifers in the contiguous United States—A systematic review of investigation approaches and monitoring networks. <em>Science of The Total Environment</em>, p.155641.</li><br /> <li>Pengfei Liu, Yu Wang, Wei Zhang, "<a href="https://onlinelibrary.wiley.com/doi/full/10.1111/ajae.12316">The Influence of the Environmental Quality Incentives Program on Local Water Quality</a>", <em>American Journal of Agricultural Economics. 2022.</em> <a href="https://doi.org/10.1111/ajae.12316">https://doi.org/10.1111/ajae.12316</a></li><br /> <li>Odeh, T., Mohammad, A.H., Pradhanang, S.M., Ismail, M. and Rödiger, T., 2021. GIS-based Analytical Modeling on Evaluating Impacts of Urbanization in Amman Water Resources, Jordan.</li><br /> <li>Panthi, J., Talchabhadel, R., Ghimire, G.R., Sharma, S., Dahal, P., Baniya, R., Boving, T., Pradhanang, S.M. and Parajuli, B., 2021. Hydrologic Regionalization under Data Scarcity: Implications for Streamflow Prediction. <em>Journal of Hydrologic Engineering</em>, <em>26</em>(9), p.05021022.</li><br /> <li>Inamdar, S., Peipoch, M., Gold, A.J., Lewis, E., Hripto, J., Sherman, M., Addy, K., Merritts, D., Kan, J., Groffman, P.M. and Walter, R., 2021. Ghosts of landuse past: legacy effects of milldams for riparian nitrogen (N) processing and water quality functions. Environmental Research Letters, 16(3), p.035016.</li><br /> <li>Hollister, J.W., Kellogg, D.Q., Lei-Parent, Q., Wilson, E., Chadwick, C., Dickson, D., Gold, A. and Arnold, C., 2022. nsink: An R package for flow path nitrogen removal estimation. <em>Journal of Open Source Software</em>, <em>7</em>(71), p.4039.</li><br /> <li>Lewis, E., S.M. Inamdar, A.J. Gold, K. Addy, T. Trammell, D. Merritts, S., M. Peipoch, P.M. Groffman, J. Hripto, M. Sherman, J. Kan, R. Walter and E.P. Lewis. 2021. Draining the landscape: How do nitrogen concentrations in riparian groundwater and stream water change following milldam removal? Journal of Geophysical Research – Biogeosciences</li><br /> <li>Suriano, Z. J., C. M. Siegert, D. J. Leathers, A. J. Gold, K. Addy, A. W. Schroth, E. Seybold, S. Inamdar, and D. F. Levia. 2021. Effects of atmospheric circulation on stream chemistry in forested watersheds across the northeastern United States: Part 2. Interannual weather type variability. Journal of Geophysical Research: Atmospheres. e2021JD034546.</li><br /> <li>Hollister. J. W., Kellogg, D. Q., Kreakie, B. J., Shivers, S., Milstead, W. B., Herron, E., Green, L., Gold, A. 2021. Increasing Chlorophyll <em>a </em>Amid Stable Nutrient Concentrations in Rhode Island Lakes and Reservoirs. Ecosphere 12, no. 6 (2021): e03555.</li><br /> <li>Muñoz-Carpena, R., Z. Yu, A. Carmona-Cabrero, G. Fox, O. Batelaan, A. Bardossy. 2022. Convergence of mechanistic modeling and artificial intelligence (AI) in hydrologic science and engineering. (under review, <em>J. Hydrology</em>).</li><br /> <li>Muñoz-Carpena, R., Reichenberger S., Sittig S., Sur R. (2022). Complex effects of leaching, sedimentation, sorption and degradation on runoff remobilization of pesticide residues in vegetative filter strips (under review, <em>ACS Environmental AU</em>).</li><br /> <li>Reichenberger, R., R. Sur, S. Sittig, S. Multsch, Á. Carmona-Cabrero, J.J. López and R Muñoz-Carpena. 2022. Dynamic prediction of effective runoff sediment particle size for improved assessment of pesticide mitigation efficiency with vegetative filter strips (under review, <em>Sci. Total Env.</em>)</li><br /> <li>Muñoz-Carpena, R., A. Ritter, R. Sur, S. Reichenberger. 2022. Effect of hydrograph type on the calculation of pesticide mitigation efficiencies of vegetative filter strips with VFSMOD in the regulatory context. (Under review, <em>Integr. Environ. Assess. Manag.</em>). </li><br /> <li>Zhang, Y., R. Bhattarai and R. Muñoz-Carpena. 2022. Effectiveness of vegetative filter strips for sediment control from steep construction areas. (Under review, <em>Catena</em>)</li><br /> <li>Orozco-López E., R. Muñoz-Carpena and B. Gao. 2022. Quantification of solute transport in a soil profile with activated macropore networks using light transmission experiments. (Under review, <em>J Hydrology</em>)</li><br /> <li>Muñoz-Carpena, R., C. Lauvernet, N. Carluer and G.A. Fox. 2021. Comment on “Modeling slope rainfall-infiltration-runoff process with shallow water table during complex rainfall patterns” by Wu et al. 2021. <em>J. Hydrology X</em> 13:100133. <a href="https://doi.org/10.1016/j.hydroa.2021.100113">doi:10.1016/j.hydroa.2021.100113.</a></li><br /> <li>Barchiesi*, S., A. Alonso, M. Pazmiño-Hernandez, J.M. Serrano-Sandí, R. Muñoz-Carpena, C. Angelini. 2021. Wetland hydropattern and vegetation greenness predict avian populations in Palo Verde, Costa Rica. <em>Ecological Applications</em>. <a href="https://doi.org/10.1002/eap.2493">doi:10.1002/eap.2493.</a></li><br /> <li>Orozco-Lopez*, E. and R. Muñoz-Carpena, R. 2021. Comparative non-Darcian modelling of subsurface preferential flow experimental observations in a riparian buffer. <em>Trans. ASABE</em> 64(5). <a href="https://doi.org/10.13031/trans.14559">doi:10.13031/trans.14559</a>.</li><br /> <li>Vazquez*, K.M, R. Muñoz-Carpena, M.D. Danyluk, A.H. Havelaar. 2021. Parsimonious mechanistic modeling of bacterial runoff to inform food safety management of agricultural water quality. <em>Appl. Environ. Microbiol.</em> 87(15):e00596-21. <a href="https://doi.org/10.1128/AEM.00596-21">doi:10.1128/AEM.00596-21.</a></li><br /> <li>Luquin*, E., M.A. Campo-Bescós, R. Muñoz-Carpena, R.L. Bingner, R.M. Cruse, H.G. Momm, R.R. Wells, J.Casalí. 2021. Evaluation of model prediction capacity of ephemeral gully temporal evolution in conservation tillage systems. <em>Earth Surf. Process. Landf.</em> 46(10):1909-1925. <a href="https://doi.org/10.1002/esp.5134">doi:10.1002/esp.5134</a></li><br /> <li>Guertault, L. G.A.Fox, D. Heeren, T. Hallihan and R Muñoz-Carpena. 2021. Quantifying the importance of preferential flow in a riparian buffer.<em> Trans. ASABE</em> 64(3):937-947. <a href="https://doi.org/10.13031/trans.14286">doi:10.13031/trans.14286</a>.</li><br /> <li>Orozco-López*, R. Muñoz-Carpena, B. Gao and G.A. Fox. 2021. High resolution pore-scale water content measurement in a translucent soil profile from light transmission. <em>Trans. ASABE</em>64(3):949-962.<a href="https://doi.org/10.13031/trans.14292">doi:10.13031/trans.14292</a>.</li><br /> <li>Medina M.*, R. Huffaker, R. Muñoz-Carpena and G. Kiker. 2021. An empirical nonlinear dynamics approach to analyzing emergent behavior of agent-based models. <em>AIP Advances</em>11:035133. <a href="about:blank">doi:10.1063/5.0023116</a></li><br /> <li>Song, J.H., Her, Y. and Guo, T., 2022. Quantifying the contribution of direct runoff and baseflow to nitrogen loading in the Western Lake Erie Basins. Scientific Reports, 12(1), pp.1-13.</li><br /> <li>G. Granco, M. Caldas, J. Bergtold, J.L. Heier Stamm, M. Mather, M. Sanderson, M. Daniels, A.Y. Sheshukov, D. Haukos, S. Ramsey. (2022) Local Environment and Individuals’ Beliefs: The Dynamics Shaping Public Support for Sustainability Policy in an Agricultural Landscape. Journal of Environmental Management. 301, 113776. (https://doi.org/10.1016/j.jenvman.2021.113776)</li><br /> <li>Koudahe, K., Sheshukov, A.Y., Aguilar, J., Djaman, K. (2021) Irrigation-Water Management and Productivity of Cotton: A Review. Sustainability. 131: 70. <a href="https://doi.org/10.3390/su131810070">https://doi.org/10.3390/su131810070</a></li><br /> <li>Song, J.H., Her, Y. and Guo, T., 2022. Quantifying the contribution of direct runoff and baseflow to nitrogen loading in the Western Lake Erie Basins. Scientific Reports, 12(1), pp.1-13. https://doi.org/10.1038/s41598-022-12740-1.</li><br /> <li>Inamdar et al., Saturated, suffocated, and salty: Human legacies produce hotspots of nitrogen in riparian zones. Journal of Geophysical Research Biogeosciences (In review).</li><br /> <li>Bhatta, A, R. Prasad, D. Chakraborty, J.N. Shaw, J. Lamba, E. Brantley, H.A. Torbert. 2021. Mehlich 3 as a Generic Soil Test Extractant for Environmental Phosphorus Risk Assessment Across Alabama Soil Regions. Agrosyst Geosci Environ. 2021; 4:e20187. <a href="https://doi.org/10.1002/agg2.20187">https://doi.org/10.1002/agg2.20187</a></li><br /> <li>Kumar, K., P. Srivastava, B. V. Ortiz, G. Morata, B. S. Takhellambam, J. Lamba, and L. Bondesan. 2021. Field-Scale Spatial and Temporal Soil Water Variability in Irrigated Croplands. Transactions of the ASABE: 64 (4), 1277-1294. doi: 10.13031/trans.14335</li><br /> <li>Singh, R., R. Prasad, B. Guertal, K. Balkcom and J. Lamba. 2021. Effects of Broiler Litter Application Rate and Time on Corn Yield and Environmental Nitrogen Loss. Agronomy Journal. doi:<a href="https://doi.org/10.1002/agj2.20944">https://doi.org/10.1002/agj2.20944</a>.</li><br /> <li>Stephenson, K., L. Shabman, J. Shortle, Z.M. Easton. 2022. Confronting our agricultural nonpoint source control policy problem. Journal of the American Water Resources Association. <a href="https://doi.org/10.1111/1752-1688.13010">https://doi.org/10.1111/1752-1688.13010</a></li><br /> <li>Deval, C., E.S. Brooks, M. Dobre, R. Lew, P.R. Robichaud, A. Fowler, J. Boll, A.S. Collick, Z.M. Easton. 2022. Pi-VAT: A web-based visualization tool for decision support using spatially complex water quality model outputs. Journal of Hydrology. <a href="https://doi.org/10.1016/j.jhydrol.2022.127529">https://doi.org/10.1016/j.jhydrol.2022.127529</a></li><br /> <li>Fleming, P., K.S. Stephenson, A.S. Collick, Z.M. Easton. 2022. Targeting for Nonpoint Source Pollution Reduction: A Synthesis of Lessons Learned, Remaining Challenges, and Emerging Opportunities. Journal of Environmental Management. DOI: <a href="https://doi.org/10.1016/j.jenvman.2022.114649">10.1016/j.jenvman.2022.114649</a></li><br /> <li>Modi, P., J. Czuba, Z.M. Easton. 2022. Coupling a land surface model with a hydrodynamic model for regional flood risk assessment due to climate change: application to the Susquehanna River. Journal of Flood Risk Management. <a href="http://doi.org/10.1111/jfr3.12763">http://doi.org/10.1111/jfr3.12763</a></li><br /> <li> Alamdari, N., P. Claggett, D.J. Sample, Z.M. Easton, M. Yazdi. 2022. Evaluating the joint effects of climate and land use change on runoff and pollutant loading in a rapidly developing watershed. Journal of Cleaner Production. <a href="https://doi.org/10.1016/j.jclepro.2021.129953">https://doi.org/10.1016/j.jclepro.2021.129953</a></li><br /> <li> Ketterings, Q. C. Twombly, A. Collick, J. Faulkner, Z.M. Easton. 2022. An evaluation BMP performance using a regional P Index and process-based watershed models. Journal of Environmental Quality (In Press).</li><br /> <li> Ebadi N., D. Bosch, R.R. White, M. Wagena, A.S. Collick, Z.M. Easton. 2022. costs of reducing emissions from a dairy farm: a constrained optimization approach. Agricultural Systems. (In Press).</li><br /> <li> Modi, P., D.R. Fuka, Z.M. Easton. 2021. Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershed. Journal of Hydrology Regional Studies. <a href="https://doi.org/10.1016/j.ejrh.2021.100830">https://doi.org/10.1016/j.ejrh.2021.100830</a></li><br /> <li> Modi, P., D.R. Fuka, Z.M. Easton. 2021. Data in Short “Impacts of Climate Change on Terrestrial Hydrological Components and Crop Water Requirement in the Chesapeake Bay Watershed. Journal of Hydrology Regional Studies. <a href="https://doi.org/10.6084/M9.FIGSHARE.14049569">https://doi.org/10.6084/M9.FIGSHARE.14049569</a></li><br /> <li>Stephenson, K., W. Ferris, E. Bock, Z.M. Easton. 2021. Treatment of legacy nitrogen as a compliance option to meet Chesapeake Bay TMDL requirements. Environmental Science & Technology. <a href="https://doi.org/10.1021/acs.est.1c04022">https://doi.org/10.1021/acs.est.1c04022</a></li><br /> <li>Duan, Y., Akula, S., Kumar, S., Lee, W. & Khajehei, S. A Hybrid Physics-AI Model to Improve Hydrological Forecasts. Artificial Intelligence for the Earth Systems accepted, doi:10.1175/AIES-D-22-0023.1 (2022).</li><br /> <li>Pan, Z., Kumar, S., Zhang, Y., & Shi, C (2022). Central continental boreal summer “warming holes” modulated by Atlantic Multidecadal Oscillation via low‐level jets. Journal of Geophysical Research: Atmospheres, e2021JD035217.</li><br /> <li>Hripto*, J., Inamdar, S., Sherman, M., Peck, E., Gold, A., Bernasconi, S., Addy, K., & Peipoch, M. Effects of relic low-head dams on stream denitrification potential: seasonality and biogeochemical controls. Aquatic Sciences. <a href="https://doi.org/10.1007/s00027-00894-z">https://doi.org/10.1007/s00027-00894-z</a> (2022) 84:60</li><br /> <li>Peck*, E., Inamdar, S., Sherman, M., Hripto, J., Peipoch, M., Gold, A., & Addy, K. Nitrogen sinks or sources? Denitrification and nitrogen removal potential in riparian legacy sediment terraces affected by milldams. Journal of Geophysical Research Biogeosciences. https://doi.org/10.1007/s00027-022-00894-z</li><br /> <li>Sherman*, M., Hripto, J., Peck, E., Gold, A., Peipoch, M., Imhoff, P., & Inamdar, S. Backed-up, Saturated, and Stagnant: Effect of Milldams on Upstream Riparian Groundwater Hydrologic and Mixing Regimes. Water Resources Research <a href="https://doi.org/10.1029/2022WR033038">https://doi.org/10.1029/2022WR03303</a></li><br /> <li>Dey, S., Saksena, S., Winter, D., Merwade, V. and McMillan, S., 2022. Incorporating Network Scale River Bathymetry to Improve Characterization of Fluvial Processes in Flood Modeling. Water Resources Research, p.e2020WR029521.</li><br /> <li>Hanna, K., Paul, M., Negahban-Azar, M., and Shirmohammadi, A. (2021). Developing a Decision Support System for Economic Analysis of Irrigation Applications in Temperate Zones. <em>Water</em>. <a href="https://doi.org/10.3390/w13152044">https://doi.org/10.3390/w13152044</a></li><br /> <li>Paul, M., Rajib, A., Negahban-Azar, M., Shirmohammadi, A., Srivastava, P. 2021. Improved Agricultural Water Management in Data-scarce Semi-arid Watersheds: Value of Integrating Remotely Sensed Leaf Area Index in Hydrological Modeling. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.148177</li><br /> <li>Paul, M., M. Negahban-Azar, A. Shirmohammadi, and H. Montas. 2021. Developing a Multicriteria Decision Analysis Framework to Evaluate Reclaimed Wastewater Use for agricultural Irrigation: The Case Study of Maryland. Hydrology 8(4):18p.</li><br /> <li>Huang, Y., R. Bawa, J. Mullen, N. Hoghooghi, L. Kalin, P. Dwivedi (2022), “A Stochastic Dynamic Optimization Approach for Understanding Expected Land Use Changes to Meet Potential Water Quality Regulations: A Case Study from Georgia, United States”, Agricultural Water Management. 271, 107799.</li><br /> <li>Bian, Z., S. Pan, Z. Wang, Y. Yao, R. Xu, H. Shi, L. Kalin, C. Anderson, D. Justic, S. Lohrenz, H. Tian (2022), “A century-long trajectory of phosphorus loading and export from Mississippi River Basin to the Gulf of Mexico: Contributions of multiple environmental changes”, Global Biogeochemical Cycles. 36, e2022GB007347. https://doi.org/10.1029/2022GB007347.</li><br /> <li>Haas, H., L. Kalin, P. Srivastava (2022), “Improved Forest Dynamics Leads to Better Hydrological Predictions in Watershed Modeling”, Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.153180.</li><br /> <li>Haas, H., M. Reaver, R. Karki, L. Kalin, P. Srivastava, D. Kaplan, C.A. Gonzalez-Benecke (2021), “Improving the representation of forests in hydrological models”, Science of Total Environment. https://doi.org/10.1016/j.scitotenv.2021.151425.</li><br /> <li>Haas, H, F. Dosdogru, L. Kalin, H. Yen (2021), “Land use and land cover input data affects the prediction of ecologically relevant flows in hydrologic modeling Corresponding Author”, Water. 13(21), 2947. https://doi.org/10.3390/w13212947.</li><br /> <li>Karki, R., P. Srivastava, L. Kalin, S. Mitra, S. Singh (2021), “Assessment of impact in groundwater levels and stream-aquifer interaction due to increased groundwater withdrawal in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin using MODFLOW”, Journal of Hydrology: Regional Studies. Vol 34. https://doi.org/10.1016/j.ejrh.2021.100802.</li><br /> <li>Ramesh, R. L. Kalin, M. Hantush, A. Chaudhary (2021), “A Secondary Assessment of Sediment Trapping Effectiveness by Vegetated Buffers”, Ecological Engineering. Vol 159. <a href="https://doi.org/10.1016/j.ecoleng.2020.106094">https://doi.org/10.1016/j.ecoleng.2020.106094</a>.</li><br /> <li>Wagner, K.L., T.J. Gentry, R.D. Harmel, E.C. Pope, L.A. Redmon. 2021<em>. </em>Grazing effects on bovine-associated and background fecal indicator bacteria levels in edge-of-field runoff.<em> Water 2021, 13, 928.</em> <a href="https://doi.org/10.3390/w13070928"><em>https://doi.org/10.3390/w13070928</em></a><em>.</em></li><br /> </ol><br /> <ol start="71"><br /> <li>Boyer EW, MA Moritz, and MG Brown (2022). Smoke deposition to water surfaces drives hydrochemical changes. Hydrological Processes, 36(6), e14626, DOI: 10.1002/hyp.14626</li><br /> <li>Clark KH, DD Iwanowicz, LR Iwanowicz, SJ Mueller, JM Wisor, C Bradshaw-Wilson, WB Schill, JR Stauffer, Jr., and EW Boyer (2022). Freshwater unionid mussels threatened by predation of Round Goby (Neogobius melanostomus). Scientific Reports, 12, 12859, DOI: 10.1038/s41598-022-16385-y (plus supporting dataset at HydroShare public data repository, DOI: 10.4211/hs.e46d4769a8a346fcaed7a27fcceb20ad)</li><br /> <li>Clark KH, JM Wisor, SJ Mueller, C Bradshaw-Wilson, EW Boyer, and JR Stauffer, Jr. (2021). Status of freshwater mussels (Unionidae) in the French Creek watershed, USA at the onset of invasion by Round Goby, Neogobius melanostomus. Water, 13(21), 3064; DOI: 10.3390/w13213064</li><br /> <li>Zhang K, J. Shen, L Guo, EW Boyer, CR Mello, P Lan, H Liu, J Gao, and B Fan (2021). Flood drainage rights in watersheds based on the harmonious allocation method. Journal of Hydrology, DOI: 10.1016/j.jhydrol.2021.126627</li><br /> <li>Zhang L, G Qin, P Lan, L Yang, CR Mello, EW Boyer, and L Guo (2021). Evaluation of three gridded precipitation products in a data scarce region in mountainous areas of the west China. Remote Sensing, 13:3795, DOI:10.3390/rs13193795</li><br /> </ol><br /> <p><em><span style="text-decoration: underline;">2) Thesis/Dissertation:</span></em></p><br /> <ol><br /> <li>Timothy McGill. Assessing machine learning utility in predicting hydrologic and nitrate dynamics in karst agroecosystems, MS Student (Primary Advisor, Fall 2019-May 2022).</li><br /> <li>Rosalia Agioutanti. Classifying and mapping aquatic vegetation in heterogenous stream ecosystems using visible and multispectral uav imagery, MS Student (Primary Advisor, Fall 2019-May 2022).</li><br /> <li>Gina DeGraves. Sediment nitrogen dynamics in backwater wetland confluences of a regulated river, MS Student (Primary Advisor, Summer 2019-Fall 2021).</li><br /> <li>Lorena Lacerda. 2021. Using remote sensing to develop irrigation scheduling tools for variable rate irrigation, Ph.D. Dissertation, University of Georgia, pp 183.</li><br /> <li>Shahed Behrouz, M., 2022. Improving Predictions of Stormwater Quantity and Quality through the Application of Modeling and Data Analysis Techniques from National to Catchment Scales, Ph.D. Dissertation, Virginia Tech, pp 203.</li><br /> <li>Umme Fatema Piu. 2022. Evaluating evapotranspiration rates for corn and cotton in thermo-limited climate of southwest Kansas. MS, Kansas State University.</li><br /> <li>Dey, S., 2021. Enabling large-scale hydrologic and hydraulic modeling through improved topographic representation. PhD dissertation, Purdue University.</li><br /> <li>Phillippe, A.J. 2022. Determining bacterial and nutrient concentrations and loadings of surface runoff from differing grazer access and vegetative cover in Northcentral Oklahoma. MS Thesis, Oklahoma State University.</li><br /> </ol><br /> <p><em><span style="text-decoration: underline;">3) Proposals Awarded/Submitted:</span></em></p><br /> <ol><br /> <li>Fox, J., Ford, W., Mahoney, D., Armstead, M., Dadi, G. BPE-Track 3: Inclusive Mentoring Hub for Enabling Pathways from Inner-City and Rural Appalachian Households to Engineering in Kentucky and West Virginia. NSF-BPE. $799,445. Role Co-Investigator. July 2022-July 2027</li><br /> <li>Ford, W. Using edge-of-field data and modeling to inform H2Ohio. Ohio department of agriculture $150,000 (as sub-award from USDA-ARS). Role: Principal Investigator.</li><br /> <li>Fox, J., Mahoney, D., Ford, W., Armstead, M. RII-BEC: Undergraduate research as a model of excellence to broaden STEM participation in EPSCoR jurisdictions: What are the mentoring costs? NSF RII-BEC. $1,000,000. Role Co-Investigator.</li><br /> <li>Improving the Sustainability of Georgia Cotton by Increasing Nitrogen and Water Use Efficiencies, Georgia Cotton Commission, 2021-2022, $58,000, Vellidis PI</li><br /> <li>Expansion of an Irrigation Scheduling Application to the U.S, Cotton Incorporated, 2021-2022, $50,000, Vellidis PI</li><br /> <li>Incorporating Volumetric Water Content (Capacitance) Sensors into the Irrigator Pro-Based Irrigation Scheduling Tool, 2021-2022, $18,000, Vellidis PI</li><br /> <li>Making Irrigator Pro an Easier-to-Use Irrigation Scheduling Tool, 2021-2022, Southern Peanut Research Initiative, $25,000, Vellidis PI.</li><br /> <li>Sample, D.J. and Scott, D., Vibrant Virginia-Improving the Resilience of Stormwater Treatment in Fredericksburg: Amount: $60,000. Sponsor: VT Center for Economic and Community Engagement, 1/01/2021 - 06/30/2022.</li><br /> <li>Shahed Behrouz, M., 2021. New Conceptualizations of Catchment-Scale Stormwater Pollution Generation Processes, Virginia Water Resources Research Center Competitive Grant, $7,000, 10/1/21-8/31/22. </li><br /> <li>Cardace, D., Pradhanang, S. M., and Moseman-Valtiera, S., Planetary Methane in Ultramafic Contexts: Searching for Cyclicity in Methane Emissions at a Planetary Analog Site in Northern California, NASA-EPSCoR $735,000 (6/2022-6/2025)</li><br /> <li>Savage, B., Pradhanang, S. M., Boving, T. Mapping Bedrock and Saltwater Intrusion in Rhode Island, USGS $90,000 (09/2021-08/2022)</li><br /> <li>Savage, B., Pradhanang, S. M., Boving, T., Mapping Bedrock and Saltwater Intrusion in Rhode Island USGS $117,337 (09/2022-08/2023)</li><br /> <li>Pradhanang, S., Kumar, R, and Rashid T, Floating Treatment Wetland System (FTWS) - Sustainable green technology to remediate polluted surface water bodies in the COVID 19-era , Asia- Pacific Network $78,000 (09/2021-08/2023)</li><br /> <li>Pradhanang, S. M., Boving, T., and Savage, B. The Rhode Island Water Resources Board (RIWRB) and University of Rhode Island (URI) Statewide Water Withdrawal Data Enhancement and Database Development Project. RIWRB-USGS $197,488 (10/20-09/22)</li><br /> <li>T Franti, A. Sheshukov, J. Lory, R. Cruse. Developing and assessing innovative ephemeral gully erosion control practices. (2021-2023). USDA $344,538</li><br /> <li>R.L. North, A. Ohler, L. McCann, T. Moore, A. Sheshukov. Valuing Water Quality Improvements in Heartland Reservoirs. (2022-2025) EPA $741,285</li><br /> <li>Pradhanang, S.M., Liu, P. Water Availability through the Integration of Hydrologic Model and Water Management Optimization Tool for Chipuxet River Watershed, Rhode Island. RIWRC-USGS. (2022-2023) USGS $50,000</li><br /> <li>USDA-Cooperative Agreement. Fuka, D.R., Z.M. Easton, R.R. White. Developing and evaluating rapidly deployable inexpensive weather, soil moisture, shock, and streamflow sensors to aid the monitoring, inspection, and rehabilitation of aging dams. $225,000. Dec 2021-Nov 2022.</li><br /> <li>USDA-Cooperative Agreement. Easton, Z.M. Modeling the Lake Champlain Basin CEAP watersheds to understand and predict conservation effects on legacy phosphorus. $134,223. Oct 2021-Sept 2023.</li><br /> <li>Virginia Tech CALS Strategic Plan Advancement. Easton, Z.M., R.R. White, K. Hamed, D.R. Fuka, M. Eick. Eyes in the Sky and Boots on the Ground: Collaborative Technologies for Monitoring and Managing Livestock Pastures. $60,000. Oct 2021-May 2023.</li><br /> <li>NSF CPS (Cyber-Physical Systems). White, R.R., E. Feuerbacher, Z.M. Easton. Collaborative Research: CPS: Medium: Greener Pastures: A pasture sanitation cyber physical system for environmental enhancement and animal monitoring. $998,232. Jan 2022-Dec 2024.</li><br /> <li>Lewis, K., K. Wagner, A. Berthold, P. DeLaune, J. Bell, D. Miller Sustainable. Agricultural Intensification and Enhancement through the Utilization of Regenerative Agricultural Management Practices. Amount: $583,438 (Total Award: $10,000,000). Sponsor: USDA-NIFA Sustainable Ag Systems Program, 9/1/2021-8/31/2026.</li><br /> <li>Wagner, K. Dam Analysis Modernization of Tools, Applications, Guidance, and Standardization (DAM-TAGS) Project – Year 1. Amount: $478,238. Sponsor: USDA-ARS Cooperative Agreement, 6/10/2021-6/9/2022.</li><br /> <li>Wagner, K., R. Bonett, A. Sewell, J. Gonzalez Estrella, S. Kim, A. Dzialowski. Oklahoma Water Resources Research Institute Program (USGS Base Funds FY21). Amount: $125,000. Sponsor: USGS, 9/1/2021-8/31/2022.</li><br /> <li>Mirchi, A, K. Wagner, S. Taghvaeian, Sarah Alian, R. Bailey. Conjunctive Freshwater-Saltwater Management for Climate-Resilient Agroecosystems. Amount: $181,568 (Total Award: $749,786). Sponsor: USDA-NIFA Foundational Program, 12/31/2021-12/12/2025.</li><br /> <li>Wagner, K., S. Sharma, S. Taghvaeian, S. Frazier, J. Warren, A. Mirchi. Oklahoma Master Irrigator Program and Ogallala Aquifer Study. Amount: $150,000. Sponsor: Oklahoma Conservation Commission, 7/1/2021-6/30/2022.</li><br /> <li>Reuter, R., K. Wagner, L. Goodman, C. Duchardt, B. Murray. Increasing the pace & scale of adoption of prescribed grazing through virtual fence technology. Amount: $93,188 (Total Award: $1,365,774). Sponsor: USDA-NRCS Conservation Innovation Grant, 7/1/2022-6/30/2025.</li><br /> </ol>Impact Statements
Date of Annual Report: 11/09/2022
Report Information
Period the Report Covers: 10/01/2021 - 09/30/2022
Participants
Participants:In person attendees (7):
● Fouad Jaber - Texas A&M
● Adel Shirmohammadi - University of Maryland
● Rafael Muñoz-Carpena - University of Florida
● Jasmeet Lamba - Auburn University
● Bill Ford - University of Kentucky
● Arun Bawa - Texas A&M
● Soni Pradhanang - University of Rhode Island
Virtual Attendees (4):
● Aleksey Sheshukov - Kansas State University
● David Sample - Virginia Tech
● Latif Kalin - Auburn University
● Elizabeth Boyer - Penn State University
Brief Summary of Minutes
Brief summary of minutes of annual meeting:
The annual meeting was held in Marriott Marquis Hotel in Houston, TX on July 17, 2022, a day prior to the start of the ASABE Annual International Meeting. Discussion topics of the meeting focused on addressing S1089 objectives, presenting accomplishments, and identifying potential tasks and/or research products delivered by the members of the Multistate Exchange Group. Meeting participants submitted state reports, highlighted accomplishments in 2021-2022 year, and posed future goals. All presentations were carried out either in-person or via Zoom.
Committee chair, Dr. Rafael Muñoz-Carpena, overviewed the previous project on TMDL and expressed that the project was successful and focused on process level models and problem centric solutions and recommendations. He concluded that coherence and success of journal collection can be important for multistate activities. Dr. Soni M Pradhanang presented an overview and history of the S1089 project, reporting requirements, and results of last year's meeting.
Project members, in-person and virtual, had extensive discussions on the special collection introduced during 2021 meeting. All participants participated in selection of overarching topic, research subtopics, potential journals, and individual papers. Dr. Adel Shirmohammadi overviewed the efforts of previous multistate projects that resulted in special collections. Journal of Environmental Management was selected as a top priority journal for this collection. Proposals for the special collection will need to be completed and submitted to the journal for consideration in 2022. Below is a tentative list of proposed papers, responsible authors, and brief overviews.
- Cover (synthesis) paper: Advances and gaps in BMPs (agricultural, urban, forestry, etc.) across critical landscapes and scales (collection editor(s))
- Using integrative metrics and data sources to characterize additive ecosystem services provided by urban stormwater management (McMillan, Jaber, Birgand, Saurav)
- This is a framework paper with the first part describing the key paradigms, barriers, opportunities (where are they placed, how are they designed, what is the goal, maintenance, etc.). Case study examples that integrate at least two dimensions (social, economic, biophysical) across scales from neighborhood or watershed.
- Advances and gaps in the Monitoring of BMPs: a critical review of methods to enhance BMP understanding, effectiveness, modeling and design (François Birgand, Bryan Maxwell, Randall Entheridge, Tiffany Messer, Jaber, Sheshukov, McMillan, Young, Hunt, Burchell, Pradhanang, Saurav)
- Progress Toward Achieving Nutrient and Sediment Reduction Goals Through Watershed Management: A regional review (Beth Boyer, Soni Pradhanang, Sanjiv Kumar, Zach Easton, Kevin Wagner, Shreeram Inamdar, Aleksey Sheshukov, Philippe Vidon, Bill Ford, Jasmeet Lamba)
- Limitations and uncertainties in predicting mitigation of runoff contaminants with vegetation buffers at the field and watershed scale (Soni Pradhanang, Rafa Muñoz-Carpena, Marzia Tamanna, Arthur Gold, Philippe Vidon, Shreeram Inamdar, Kelly Addy)
- Critical Spatio-Temporall Scales for BMP design: Systems thinking applied to BMP development and management (Rafa Muñoz-Carpena, Adel Shirmohammadi, Jasmeet Lamba, Saurav, Bill Ford, Aleksey Sheshukov)
- Critical BMP physical process scales and human scales; Critical BMP human scales: Data, Management Action, Lifecycle and Maintenance, Societal Benefit; Lag time in BMP response and policy implication; Gaps between scales
- Alternative water resources in the context of climate change (Adel Shirmohammadi, Fuad Jaber, Masoud Negahban-Azar, Hubert Montas)
- Stress on Water Resources under Climate and Future Climate Scenarios; Rain water harvesting; Reusable water (e.g., WTP discharge, Food processing units, desalination, etc); Economic, Social, and policy (e.g., FSMA -Food Safety Modernization Act); Feasibility of Alternative Water Resources.
- Legacy nutrients and sediments impacting the efficiency of BMP performance: Model assessment and improvement needs (Jasmeet Lamba)
- A spatial framework for detecting water quality and targeting BMPs in agricultural watersheds (Kevin Wagner)
- Role of AI/Machine Learning in identifying hotspots and allocation of BMPs (Saurav Kumar)
Time and location of the next annual meeting was discussed and several options are presented below. The leadership group will meet during the year and decide on the potential location of next year’s annual meeting:
- UNL at Lincoln, NE to tag along with next year’s ASABE conference
- Iowa State University at Ames, IA as it is close to next year’s ASABE conference
- University of Puerto Rico - Fouad and Soni will inquire about adding participants from there
- Auburn University at Auburn, AL
- Kansas State University at Manhattan, KS to tag along with next year’s ASABE conference
Elected officers (2022-2023):
- Secretary: Latif Kalin (Auburn U)
- Vice Chair: Aleksey Sheshukov (KSU)
- Chair: Fouad Jaber (Texas A&M)
Past Chairs:
- Rafa Munoz-Carpena (2020-2022)
- Soni Pradhanang (2020-2021)
Accomplishments
<p><strong>Accomplishments: </strong></p><br /> <p>The main focus of this project is to improve the abilities to better understand and predict pollutants and evaluate the effectiveness of best management practices (BMPs) on critical landscapes at the watershed scale. This includes hillslope soil health, water quality of streams and waterbodies, environmental benefits of mitigation practices and cost effectiveness of BMPs. The objectives will be met through the following activities: monitoring at sub-watershed scales, modeling at larger spatial scales, and analyzing uncertainty in both monitoring and modeling efforts.</p><br /> <p><strong>Short-term Outcomes: </strong>Project activities from October 2021 to September 2022 are summarized in the following state reports:</p><br /> <p><span style="text-decoration: underline;">Texas A&M (F. Jaber)</span></p><br /> <p>Texas A&M developed TMDL Report Selection Tool (http://Occviz.com/tmdl), a tool that uses natural language processing to understand linkages between modeling tools and impairments. In addition, we developed BMP-Net a deep neural network based on PlanetScope data to identify vegetative and structural BMPs. We worked with USEPA to develop national scale water quality models at HUC8, 10, 12, and 14 digits for the entire U.S and a GIS Tool for determining flood prone areas in Denton county. In collaboration with Nature Conservancy we developed Green stormwater infrastructure prioritization maps for Dallas flooding, a watershed protection plan for Rowlett Creek, Plano, TX, estimated impact of riparian cover on critical shear stress, and developed and implemented HAWQS.</p><br /> <p><span style="text-decoration: underline;">Auburn University (J. Lamba, L. Kalin, S. Kumar)</span></p><br /> <p>A hybrid biophysical-Artificial Intelligence (Physics-AI) model is developed from the first principle to estimate streamflow forecast errors at ungauged locations, improving the forecast's reliability. The first principle refers to identifying the need for the hybrid Physics-AI model, determining physically interpretable and machine identifiable model inputs, followed by the Deep Learning (DL) model development and its evaluations, and finally, a biophysical interpretation of the hybrid model. A very high-resolution National Water Model (NWM) forecast, developed by the National Oceanic and Atmospheric Administration, serves as the biophysical component of the hybrid model. Out of 2.7 million daily forecasts, less than 1% of the forecasts can be verified using the traditional hydrological method of comparing the forecast with the observations, motivating the need for the AI technique to improve forecast reliability at millions of ungauged locations. An exploratory analysis followed by the Classification and Regression Tree analysis successfully determines the dependency of the forecast errors on the biophysical attributes, which along with the NWM forecast, are used for the DL model development. The hybrid model is evaluated in a sub-tropical humid climate of Alabama, and Georgia states in the United States. Long-term streamflow forecasts from zero-day lead to 30-day lead forecasts are archived and analyzed for 979 days (Dec. 2018 to Aug. 2021) and 389 USGS gauging stations. The forecast reliability is assessed as the probability of capturing the observations in its ensemble range. As a result, the forecast reliability increased from 21(±1) % in the NWM only forecasts to 82(±3) % in the hybrid Physics-AI model.</p><br /> <p><span style="text-decoration: underline;">University of Kentucky (B. Ford) </span></p><br /> <p>Research at the University of Kentucky has focused on source, fate and transport of contaminants in karst and tile-drained landscapes, as well as river-tributary confluences. Seven graduate students have worked on the project (5 contributing during the 21-22 reporting period). Research in tile drained landscapes has focused on monitoring and modeling of sediment transport in subsurface drainage including ongoing collaborations with the USDA-ARS SDRU in Ohio and USDA-ARS NSERL in Indiana. Deliverables include a peer-reviewed manuscript (Nazari et al., 2022) and a new proposal funded by H2Ohio (ODA) in collaboration with the USDA-ARS SDRU. Research in karst watersheds of central KY has focused on impacts of karst hydrologic and biogeochemical processes on nitrate and dissolved reactive P loadings at the watershed-scale. During the reporting period, two students have worked on this topic, with one (McGill) receiving his MS degree. An NSF BPE proposal was funded, and an NSF EPSCOR proposal was submitted to support students, monitoring and modeling initiatives related to this topic. Two papers (Radcliff et al., 2021 and Husic et al., 2022) were published on this topic. Research on fate and transport of contaminants in streams has focused on aquatic vegetation characterization using UAVs, impacts of stream restoration on hydrology and water quality in karst landscapes, accumulation of PFAS in benthic sediments, and fate and transport of sediments and nutrients in river-tributary confluences. During the reporting period, three students have been supported on this topic (with one graduate), and one peer-reviewed paper published (Riddle et al., 2022).</p><br /> <p><span style="text-decoration: underline;">University of Rhode Island (S. Pradhanang)</span></p><br /> <p>Water use and withdrawal research focused on developing private water suppliers' water use database and web interface for the State of. Rhode Island. The research is a part of USGS’s water use database research program. In collaboration with the EPA and RI Water Resources Board, agricultural water uses, and allocation optimization model is being developed for southern RI. The Electrical Resistivity survey done in combination with other geophysical methods are used to study saltwater intrusion. The NASA EPSCoR funded grant to study methane and greenhouse gasses in marshes and groundwater aims at understanding whether deep groundwater functions as storage or sink of potent greenhouse gasses. Various stormwater basins within RI Roger Williams Park are monitored to study various pollutants including algae in water. The USGS supported State map project focuses on mapping the surface geology statewide and focuses on specific areas at a smaller scale for mapping additional layers. RIGS, with partners in the state, plans to develop a hydrogeologic model at the watershed scale to inform statewide planning for water resources, flood preparation and response, and drought monitoring.</p><br /> <p><span style="text-decoration: underline;">Kansas State University (A. Sheshukov)</span></p><br /> <p>The activities were centered over development of w/q models at the watershed, hillslope, and reservoir scales. We developed and calibrated a SWAT model for the Prairie Band Potawatomi Nation tribal area within the Soldier Creek watershed north of Topeka, KS. The model accounts for specific ag cropland and rangeland practices utilized within the tribal land that were obtained with close partnership with KDHE, tribal community, and local residents. Based on the results we developed a plan of BMP implementation for water-quality improvement. We installed a multi sensor stationary buoy in Marion Reservoir in Kansas for detecting valuable blue-green algae characteristics instrumented with in-situ sensors for near continuous measurements of water temperature, specific conductance, dissolved oxygen, pH, dissolved organic matter, turbidity, light penetration and chlorophyll and phycocyanin fluorescence. We studied the benefits (production and environmental) of cotton production in western Kansas by collecting and analyzing data on three cotton fields. The updated crop coefficient function was developed to better reflect thermo-limited conditions of southern Kansas. We analyzed crop field susceptibility to ephemeral gully erosion by collecting data from various sources (LiDAR, historic imagery, drones, etc.) and using geospatial and machine learning approaches. Novel approaches to detection of gully formations from aerial images were developed and applied in a HUC-12 area.</p><br /> <p><span style="text-decoration: underline;">University of Maryland (A. Shirmohammadi)</span></p><br /> <p>Work was focused on post model outcome development; interfacing SWAT model with agent-based model; identifying hotspots using genetic algorithms; social acceptability and cost effectiveness of modeling results on NPS pollution hotspots. We looked at the importance of picking BMPs based on hotspot identification rather than random allocation. The studies at Warner Creek Watershed in the Monocracy River Basin and Choptank River Watershed in the Coastal Plain of Maryland were on modeling based on available long-term monitoring data, while multicriteria decision analysis framework was developed for water reuse and irrigation economics in agriculture.</p><br /> <p><span style="text-decoration: underline;">University of Florida (R. Muñoz-Carpena, Y. Her)</span></p><br /> <p>The accomplishments from the Florida team are about BMP adoption in Florida (Dr. Young Gu Her) and analysis of the effectiveness and long-term effects of a commonly adopted BMP (vegetative filter strips) form surface runoff pollution control, including the regulatory implications (Dr. Muñoz-Carpena). We also study large-scale hydrological, water quality and ecological impacts of agricultural development of smallholders in Africa (Laikipia, Kenya) and adoption of BMP (reduced tillage, soil management) to assess the distant ecological degradation of the dry African savanna introduced by these developments (Dr. Muñoz-Carpena).</p><br /> <p>Dr. Muñoz-Carpena serves as Chair of this Hatch Project for this year and will coordinate the reporting and efforts. Under the organization of this group, we will submit and develop a special journal collection on the topic of "Advances and gaps in agricultural and urban BMPs across critical scales” that will be submitted to a top-tier journal in the specialty.</p><br /> <p><span style="text-decoration: underline;">Virginia Tech (D. Sample)</span></p><br /> <p>Watershed research at Virginia Tech is focused upon stormwater management, watershed modeling, and well water quality. Stormwater research at Virginia Tech is currently focused on 1) monitoring runoff from urban catchments with homogenous land use, and using these data for calibration of hydrologic/water quality models; 2) developing integrated urban hydrologic/sediment transport models of urbanized catchments using SWMM and HEC-RAS with and without best management practices (BMPs) to assess which projects and criteria enhance stream stability. Watershed modeling and management is currently focused on 1) quantifying nitrogen removal rates from spring bioreactors treating legacy nitrogen in groundwater, specifically the effect of nitrogen loading and flow permanence and variability on removal rates. This includes working with partners at Virginia Dept of Environmental Quality (DEQ) to develop a $1 million pilot program using bioreactors to treat legacy nitrogen; 2) integrating real-time animal/environmental sensing using IoT sensors and modeling with autonomous robotics to manage pasture-based manure nutrients; 3) developing integrated agroecosystem models to evaluate the impacts of climate change, best management practices, uncertainty, and management actions on natural resources and farm viability. Twelve journal articles (10 published and 2 in press), 1 dissertation, and 6 proposals were produced and/or awarded, and 6 presentations were made during 2021-22. Ten students were mentored during this period.</p><br /> <p><span style="text-decoration: underline;">University of Georgia (G. Vellidis)</span></p><br /> <p>Research at the University of Georgia focused on developing and evaluating BMPs for the traditional cotton-peanut-corn crop rotation used in the agricultural areas of the state. All crops were planted into a rye cover crop using strip tillage following burndown with glyphosate. Three irrigation × three fertilization treatments were evaluated in the corn and cotton plots. These consisted of two irrigation and two fertilization BMPs compared to standard practice. Fertilization BMPs that were evaluated include using fertigation to apply side-dress N on corn and cotton and using UAV-derived NDVI to apply side-dress N on cotton. Irrigation scheduling BMPs include using soil moisture sensors and ET-based scheduling tools. Since N fertilizer is not applied to peanut during the growing season, nine irrigation treatments were evaluated in peanut. These included seven irrigation scheduling BMPs compared to a rainfed treatment and a farmer-standard irrigation scheduling practice. Data collected include continuous soil moisture measured with matric potential type soil moisture sensors and soil nitrogen and crop biomass measured at regular intervals for the corn and cotton crops. Biomass included dry weight of separate plant tissues as well as Total Kjeldahl Nitrogen (TKN) and yield. Soil samples were analyzed for Nitrate, Ammonium, and TKN.</p><br /> <p><span style="text-decoration: underline;">Purdue University (S. McMillan)</span></p><br /> <p>Our project goals are to better understand the mechanisms for effective agricultural conservation practices at the site and watershed scales. This work focuses on identifying environmental controls using experiments and monitoring data to incorporate knowledge in management and restoration strategies. We have multiple projects to address this in wetlands, floodplains, and infield practices on working farms. Our work in wetlands (USDA NIFA) and floodplains (NSF) focuses on maximizing nutrient retention while mitigating the deleterious climate effects of CH<sub>4</sub> and N<sub>2</sub>O release. In paired watershed studies (EPA), we are working at the HUC-12 scale to link changes in stream chemistry and nutrient loading to land use practices. Together this work will help generate models that are informed by ecosystem processes as we design restoration practices from site to watershed scales that are optimized to improve water quality through nutrient retention, minimize climate impact by reducing GHG emissions, and maximize agricultural productivity.</p><br /> <p><span style="text-decoration: underline;">University of Delaware (S. Inamdar)</span></p><br /> <p>Our overall goal is to better understand the concentrations, forms, and fluxes of nitrogen (N) in watersheds and how land use activities and BMPs affect this pollutant. Currently we have three emphasis areas where we are studying the fate and transport of N. These three focus areas are: (1) the effect of milldams and similar barriers on the concentrations, forms, fate and transport of N in stream and riparian zones; (2) the concentrations, fate and transport of N associated with suspended legacy sediment transport in watersheds; and (3) the concentrations and fate of N in restored stream floodplains. We have multiple NSF and USDA AFRI projects addressing these areas of research.</p><br /> <p><span style="text-decoration: underline;">Oklahoma State University (K. Wagner)</span></p><br /> <p>Watershed research at the Oklahoma Water Resources Center focuses on evaluating implementation of novel regenerative agricultural BMPs and virtual fencing. Through small watershed scale monitoring of water quality and quantity, we are working to inform watershed scale modeling and provide insights into processes that determine pollutant fate and transport and the role these novel BMPs play in pollutant reduction. With funding from USDA-NIFA, 12 small watershed sites were installed this year in Altus, Oklahoma to evaluate the benefits of regenerative agriculture practices in cotton production systems. Samples were collected from 8 runoff events this project period. With funding from OSU’s Thomas E. Berry Professorship, monitoring of runoff from 10 small watersheds at the Cross Timbers Experimental Range continued, helping improve understanding of how natural sources and conventional grazing practices impact grazing land water quality. 104 samples were collected over 17 events this project period. Finally, with funding from EPA, 2 paired watersheds were installed this year to evaluate the water resource benefits of using virtual fencing to improve grazing management. 33 samples were collected over 13 runoff events this project period. This first year, continuous grazing is being implemented at all sites to serve as a baseline for evaluation. In year 2, virtual fencing will be used to implement rotational grazing and riparian protection.</p><br /> <p><strong>Outputs: </strong></p><br /> <p>Publications, conferences, reports and thesis:</p><br /> <p>Journals: 75; Thesis/Dissertations: 8; Proposals: 27</p><br /> <p> </p><br /> <p><strong>Impacts:</strong> </p><br /> <p><strong>Activities:</strong> The technical committee and the officers met virtually every other month to discuss project objectives and plans for the annual meeting.</p>Publications
<p> </p><br /> <ol><br /> <li>Nazari, S., Ford, W.I., King, K. 2022. Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems. <em>Agricultural Water Management.</em> 269: 107641. https://doi.org/10.1016/j.agwat.2022.107641. </li><br /> <li>Riddle, B., Fox, J., Mahoney, D. T., Ford, W., Wang, Y., Pollock, E., Backus, J. 2022<em>.</em> Investigation of carbon and nitrogen stable isotope tracers (non)conservativeness for sediment fingerprinting. <em>Science of the Total Environment</em>. 817: 152640. https://doi.org/10.1016/j.scitotenv.2021.152640. </li><br /> <li>Radcliff, C., Ford, W.I., Nazari, S. Sheppard, C. 2021. Impact of water source dynamics on dissolved reactive phosphorus loadings in heterogeneous karst agroecosystems with phosphatic limestones. <em>Hydrological Processes</em>. 35(11): e14422. <a href="https://doi.org/10.1002/hyp.14422">36Thttps://doi.org/10.1002/hyp.14422</a>36T. </li><br /> <li>Husic, A., Fox, J., Al Aamery, N., Ford, W., Pollock, E., Backus, J. 2021. Seasonality of recharge drives spatial and temporal nitrate removal in a karst conduit as evidenced by nitrogen isotope modeling. <em>JGR Biogeosciences.</em> e2021JG006454. <a href="https://doi.org/10.1029/2021JG006454">https://doi.org/10.1029/2021JG006454</a>. </li><br /> <li>Shahed Behrouz, M.S., Yazdi, M.N., Sample, D.J., 2022. Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff. J. Environ. Manage. 317, 115412. https://doi.org/10.1016/j.jenvman.2022.115412</li><br /> <li>Shahed Behrouz, M. S., Yazdi, M. N., Sample, D. J., Scott, D., and Owen, J. S., 2022. What are the relevant sources and factors affecting event mean concentrations (EMCs) of nutrients and sediment in stormwater? Science of the Total Environment, 828, 154368. https://doi.org/10.1016/j.scitotenv.2022.154368</li><br /> <li>Alamdari, N., Claggett, P., Sample, D., Easton, Z., and Nayeb Yazdi, M., 2022. Evaluating the joint effects of climate and land use change on runoff and pollutant loading. Journal of Cleaner Production, 330, 129953, doi:10.1016/j.jclepro.2021.129953 </li><br /> <li>Sangster, S., Gruver, M., Lacerda, L., Perry, C., Washington, B., Vellidis, G. 2021. Evaluation of irrigation and fertilization strategies to improve irrigation and nitrogen water use efficiencies in cotton. 2021 ASA, CSSA, SSSA International Annual Meeting, 08 November 2021, Salt Lake City, UT, USA, <a href="https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/136430">https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/136430</a> </li><br /> <li>Vellidis, G., Butts, C., Gallios, I., Ortiz, B. 2021. CropFIT - an integrated SmartIrrigation mobile app for corn, cotton, peanut, and soybean. 2021 ASA, CSSA, SSSA International Annual Meeting, 08 November 2021, Salt Lake City, UT, USA, <a href="https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135167">https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135167</a></li><br /> <li>Gallios, I., Butts, C., Perry, C., Vellidis, G. 2021. Making Irrigator Pro and easier to use irrigation scheduling tool. 2021 ASA, CSSA, SSSA International Annual Meeting, 08 November 2021, Salt Lake City, UT, USA, <a href="https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135255">https://scisoc.confex.com/scisoc/2021am/prelim.cgi/Paper/135255</a> </li><br /> <li>Shrestha, S.G. and Pradhanang, S.M., 2022. Optimal selection of representative climate models and statistical downscaling for climate change impact studies: a case study of Rhode Island, USA. <em>Theoretical and Applied Climatology</em>.</li><br /> <li>Sharma, S., Talchabhadel, R., Nepal, S., Ghimire, G., Rakhal, B., Panthi, J., Adhikari, B., Pradhanang, S. M., Maskey, S., and Kumar, S., 2022<em>.</em> Increasing risk of cascading hazards in the central Himalayas. <em>Nat Hazards</em>. <a href="https://doi.org/10.1007/s11069-022-05462-0">https://doi.org/10.1007/s11069-022-05462-0</a></li><br /> <li>Panthi, J., Pradhanang, S.M., Nolte, A. and Boving, T.B., 2022. Saltwater intrusion into coastal aquifers in the contiguous United States—A systematic review of investigation approaches and monitoring networks. <em>Science of The Total Environment</em>, p.155641.</li><br /> <li>Pengfei Liu, Yu Wang, Wei Zhang, "<a href="https://onlinelibrary.wiley.com/doi/full/10.1111/ajae.12316">The Influence of the Environmental Quality Incentives Program on Local Water Quality</a>", <em>American Journal of Agricultural Economics. 2022.</em> <a href="https://doi.org/10.1111/ajae.12316">https://doi.org/10.1111/ajae.12316</a></li><br /> <li>Odeh, T., Mohammad, A.H., Pradhanang, S.M., Ismail, M. and Rödiger, T., 2021. GIS-based Analytical Modeling on Evaluating Impacts of Urbanization in Amman Water Resources, Jordan.</li><br /> <li>Panthi, J., Talchabhadel, R., Ghimire, G.R., Sharma, S., Dahal, P., Baniya, R., Boving, T., Pradhanang, S.M. and Parajuli, B., 2021. Hydrologic Regionalization under Data Scarcity: Implications for Streamflow Prediction. <em>Journal of Hydrologic Engineering</em>, <em>26</em>(9), p.05021022.</li><br /> <li>Inamdar, S., Peipoch, M., Gold, A.J., Lewis, E., Hripto, J., Sherman, M., Addy, K., Merritts, D., Kan, J., Groffman, P.M. and Walter, R., 2021. Ghosts of landuse past: legacy effects of milldams for riparian nitrogen (N) processing and water quality functions. Environmental Research Letters, 16(3), p.035016.</li><br /> <li>Hollister, J.W., Kellogg, D.Q., Lei-Parent, Q., Wilson, E., Chadwick, C., Dickson, D., Gold, A. and Arnold, C., 2022. nsink: An R package for flow path nitrogen removal estimation. <em>Journal of Open Source Software</em>, <em>7</em>(71), p.4039.</li><br /> <li>Lewis, E., S.M. Inamdar, A.J. Gold, K. Addy, T. Trammell, D. Merritts, S., M. Peipoch, P.M. Groffman, J. Hripto, M. Sherman, J. Kan, R. Walter and E.P. Lewis. 2021. Draining the landscape: How do nitrogen concentrations in riparian groundwater and stream water change following milldam removal? Journal of Geophysical Research – Biogeosciences</li><br /> <li>Suriano, Z. J., C. M. Siegert, D. J. Leathers, A. J. Gold, K. Addy, A. W. Schroth, E. Seybold, S. Inamdar, and D. F. Levia. 2021. Effects of atmospheric circulation on stream chemistry in forested watersheds across the northeastern United States: Part 2. Interannual weather type variability. Journal of Geophysical Research: Atmospheres. e2021JD034546.</li><br /> <li>Hollister. J. W., Kellogg, D. Q., Kreakie, B. J., Shivers, S., Milstead, W. B., Herron, E., Green, L., Gold, A. 2021. Increasing Chlorophyll <em>a </em>Amid Stable Nutrient Concentrations in Rhode Island Lakes and Reservoirs. Ecosphere 12, no. 6 (2021): e03555.</li><br /> <li>Muñoz-Carpena, R., Z. Yu, A. Carmona-Cabrero, G. Fox, O. Batelaan, A. Bardossy. 2022. Convergence of mechanistic modeling and artificial intelligence (AI) in hydrologic science and engineering. (under review, <em>J. Hydrology</em>).</li><br /> <li>Muñoz-Carpena, R., Reichenberger S., Sittig S., Sur R. (2022). Complex effects of leaching, sedimentation, sorption and degradation on runoff remobilization of pesticide residues in vegetative filter strips (under review, <em>ACS Environmental AU</em>).</li><br /> <li>Reichenberger, R., R. Sur, S. Sittig, S. Multsch, Á. Carmona-Cabrero, J.J. López and R Muñoz-Carpena. 2022. Dynamic prediction of effective runoff sediment particle size for improved assessment of pesticide mitigation efficiency with vegetative filter strips (under review, <em>Sci. Total Env.</em>)</li><br /> <li>Muñoz-Carpena, R., A. Ritter, R. Sur, S. Reichenberger. 2022. Effect of hydrograph type on the calculation of pesticide mitigation efficiencies of vegetative filter strips with VFSMOD in the regulatory context. (Under review, <em>Integr. Environ. Assess. Manag.</em>). </li><br /> <li>Zhang, Y., R. Bhattarai and R. Muñoz-Carpena. 2022. Effectiveness of vegetative filter strips for sediment control from steep construction areas. (Under review, <em>Catena</em>)</li><br /> <li>Orozco-López E., R. Muñoz-Carpena and B. Gao. 2022. Quantification of solute transport in a soil profile with activated macropore networks using light transmission experiments. (Under review, <em>J Hydrology</em>)</li><br /> <li>Muñoz-Carpena, R., C. Lauvernet, N. Carluer and G.A. Fox. 2021. Comment on “Modeling slope rainfall-infiltration-runoff process with shallow water table during complex rainfall patterns” by Wu et al. 2021. <em>J. Hydrology X</em> 13:100133. <a href="https://doi.org/10.1016/j.hydroa.2021.100113">doi:10.1016/j.hydroa.2021.100113.</a></li><br /> <li>Barchiesi*, S., A. Alonso, M. Pazmiño-Hernandez, J.M. Serrano-Sandí, R. Muñoz-Carpena, C. Angelini. 2021. Wetland hydropattern and vegetation greenness predict avian populations in Palo Verde, Costa Rica. <em>Ecological Applications</em>. <a href="https://doi.org/10.1002/eap.2493">doi:10.1002/eap.2493.</a></li><br /> <li>Orozco-Lopez*, E. and R. Muñoz-Carpena, R. 2021. Comparative non-Darcian modelling of subsurface preferential flow experimental observations in a riparian buffer. <em>Trans. ASABE</em> 64(5). <a href="https://doi.org/10.13031/trans.14559">doi:10.13031/trans.14559</a>.</li><br /> <li>Vazquez*, K.M, R. Muñoz-Carpena, M.D. Danyluk, A.H. Havelaar. 2021. Parsimonious mechanistic modeling of bacterial runoff to inform food safety management of agricultural water quality. <em>Appl. Environ. Microbiol.</em> 87(15):e00596-21. <a href="https://doi.org/10.1128/AEM.00596-21">doi:10.1128/AEM.00596-21.</a></li><br /> <li>Luquin*, E., M.A. Campo-Bescós, R. Muñoz-Carpena, R.L. Bingner, R.M. Cruse, H.G. Momm, R.R. Wells, J.Casalí. 2021. Evaluation of model prediction capacity of ephemeral gully temporal evolution in conservation tillage systems. <em>Earth Surf. Process. Landf.</em> 46(10):1909-1925. <a href="https://doi.org/10.1002/esp.5134">doi:10.1002/esp.5134</a></li><br /> <li>Guertault, L. G.A.Fox, D. Heeren, T. Hallihan and R Muñoz-Carpena. 2021. Quantifying the importance of preferential flow in a riparian buffer.<em> Trans. ASABE</em> 64(3):937-947. <a href="https://doi.org/10.13031/trans.14286">doi:10.13031/trans.14286</a>.</li><br /> <li>Orozco-López*, R. Muñoz-Carpena, B. Gao and G.A. Fox. 2021. High resolution pore-scale water content measurement in a translucent soil profile from light transmission. <em>Trans. ASABE</em>64(3):949-962.<a href="https://doi.org/10.13031/trans.14292">doi:10.13031/trans.14292</a>.</li><br /> <li>Medina M.*, R. Huffaker, R. Muñoz-Carpena and G. Kiker. 2021. An empirical nonlinear dynamics approach to analyzing emergent behavior of agent-based models. <em>AIP Advances</em>11:035133. <a href="about:blank">doi:10.1063/5.0023116</a></li><br /> <li>Song, J.H., Her, Y. and Guo, T., 2022. Quantifying the contribution of direct runoff and baseflow to nitrogen loading in the Western Lake Erie Basins. Scientific Reports, 12(1), pp.1-13.</li><br /> <li>G. Granco, M. Caldas, J. Bergtold, J.L. Heier Stamm, M. Mather, M. Sanderson, M. Daniels, A.Y. Sheshukov, D. Haukos, S. Ramsey. (2022) Local Environment and Individuals’ Beliefs: The Dynamics Shaping Public Support for Sustainability Policy in an Agricultural Landscape. Journal of Environmental Management. 301, 113776. (https://doi.org/10.1016/j.jenvman.2021.113776)</li><br /> <li>Koudahe, K., Sheshukov, A.Y., Aguilar, J., Djaman, K. (2021) Irrigation-Water Management and Productivity of Cotton: A Review. Sustainability. 131: 70. <a href="https://doi.org/10.3390/su131810070">https://doi.org/10.3390/su131810070</a></li><br /> <li>Song, J.H., Her, Y. and Guo, T., 2022. Quantifying the contribution of direct runoff and baseflow to nitrogen loading in the Western Lake Erie Basins. Scientific Reports, 12(1), pp.1-13. https://doi.org/10.1038/s41598-022-12740-1.</li><br /> <li>Inamdar et al., Saturated, suffocated, and salty: Human legacies produce hotspots of nitrogen in riparian zones. Journal of Geophysical Research Biogeosciences (In review).</li><br /> <li>Bhatta, A, R. Prasad, D. Chakraborty, J.N. Shaw, J. Lamba, E. Brantley, H.A. Torbert. 2021. Mehlich 3 as a Generic Soil Test Extractant for Environmental Phosphorus Risk Assessment Across Alabama Soil Regions. Agrosyst Geosci Environ. 2021; 4:e20187. <a href="https://doi.org/10.1002/agg2.20187">https://doi.org/10.1002/agg2.20187</a></li><br /> <li>Kumar, K., P. Srivastava, B. V. Ortiz, G. Morata, B. S. Takhellambam, J. Lamba, and L. Bondesan. 2021. Field-Scale Spatial and Temporal Soil Water Variability in Irrigated Croplands. Transactions of the ASABE: 64 (4), 1277-1294. doi: 10.13031/trans.14335</li><br /> <li>Singh, R., R. Prasad, B. Guertal, K. Balkcom and J. Lamba. 2021. Effects of Broiler Litter Application Rate and Time on Corn Yield and Environmental Nitrogen Loss. Agronomy Journal. doi:<a href="https://doi.org/10.1002/agj2.20944">https://doi.org/10.1002/agj2.20944</a>.</li><br /> <li>Stephenson, K., L. Shabman, J. Shortle, Z.M. Easton. 2022. Confronting our agricultural nonpoint source control policy problem. Journal of the American Water Resources Association. <a href="https://doi.org/10.1111/1752-1688.13010">https://doi.org/10.1111/1752-1688.13010</a></li><br /> <li>Deval, C., E.S. Brooks, M. Dobre, R. Lew, P.R. Robichaud, A. Fowler, J. Boll, A.S. Collick, Z.M. Easton. 2022. Pi-VAT: A web-based visualization tool for decision support using spatially complex water quality model outputs. Journal of Hydrology. <a href="https://doi.org/10.1016/j.jhydrol.2022.127529">https://doi.org/10.1016/j.jhydrol.2022.127529</a></li><br /> <li>Fleming, P., K.S. Stephenson, A.S. Collick, Z.M. Easton. 2022. Targeting for Nonpoint Source Pollution Reduction: A Synthesis of Lessons Learned, Remaining Challenges, and Emerging Opportunities. Journal of Environmental Management. DOI: <a href="https://doi.org/10.1016/j.jenvman.2022.114649">10.1016/j.jenvman.2022.114649</a></li><br /> <li>Modi, P., J. Czuba, Z.M. Easton. 2022. Coupling a land surface model with a hydrodynamic model for regional flood risk assessment due to climate change: application to the Susquehanna River. Journal of Flood Risk Management. <a href="http://doi.org/10.1111/jfr3.12763">http://doi.org/10.1111/jfr3.12763</a></li><br /> <li> Alamdari, N., P. Claggett, D.J. Sample, Z.M. Easton, M. Yazdi. 2022. Evaluating the joint effects of climate and land use change on runoff and pollutant loading in a rapidly developing watershed. Journal of Cleaner Production. <a href="https://doi.org/10.1016/j.jclepro.2021.129953">https://doi.org/10.1016/j.jclepro.2021.129953</a></li><br /> <li> Ketterings, Q. C. Twombly, A. Collick, J. Faulkner, Z.M. Easton. 2022. An evaluation BMP performance using a regional P Index and process-based watershed models. Journal of Environmental Quality (In Press).</li><br /> <li> Ebadi N., D. Bosch, R.R. White, M. Wagena, A.S. Collick, Z.M. Easton. 2022. costs of reducing emissions from a dairy farm: a constrained optimization approach. Agricultural Systems. (In Press).</li><br /> <li> Modi, P., D.R. Fuka, Z.M. Easton. 2021. Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershed. Journal of Hydrology Regional Studies. <a href="https://doi.org/10.1016/j.ejrh.2021.100830">https://doi.org/10.1016/j.ejrh.2021.100830</a></li><br /> <li> Modi, P., D.R. Fuka, Z.M. Easton. 2021. Data in Short “Impacts of Climate Change on Terrestrial Hydrological Components and Crop Water Requirement in the Chesapeake Bay Watershed. Journal of Hydrology Regional Studies. <a href="https://doi.org/10.6084/M9.FIGSHARE.14049569">https://doi.org/10.6084/M9.FIGSHARE.14049569</a></li><br /> <li>Stephenson, K., W. Ferris, E. Bock, Z.M. Easton. 2021. Treatment of legacy nitrogen as a compliance option to meet Chesapeake Bay TMDL requirements. Environmental Science & Technology. <a href="https://doi.org/10.1021/acs.est.1c04022">https://doi.org/10.1021/acs.est.1c04022</a></li><br /> <li>Duan, Y., Akula, S., Kumar, S., Lee, W. & Khajehei, S. A Hybrid Physics-AI Model to Improve Hydrological Forecasts. Artificial Intelligence for the Earth Systems accepted, doi:10.1175/AIES-D-22-0023.1 (2022).</li><br /> <li>Pan, Z., Kumar, S., Zhang, Y., & Shi, C (2022). Central continental boreal summer “warming holes” modulated by Atlantic Multidecadal Oscillation via low‐level jets. Journal of Geophysical Research: Atmospheres, e2021JD035217.</li><br /> <li>Hripto*, J., Inamdar, S., Sherman, M., Peck, E., Gold, A., Bernasconi, S., Addy, K., & Peipoch, M. Effects of relic low-head dams on stream denitrification potential: seasonality and biogeochemical controls. Aquatic Sciences. <a href="https://doi.org/10.1007/s00027-00894-z">https://doi.org/10.1007/s00027-00894-z</a> (2022) 84:60</li><br /> <li>Peck*, E., Inamdar, S., Sherman, M., Hripto, J., Peipoch, M., Gold, A., & Addy, K. Nitrogen sinks or sources? Denitrification and nitrogen removal potential in riparian legacy sediment terraces affected by milldams. Journal of Geophysical Research Biogeosciences. https://doi.org/10.1007/s00027-022-00894-z</li><br /> <li>Sherman*, M., Hripto, J., Peck, E., Gold, A., Peipoch, M., Imhoff, P., & Inamdar, S. Backed-up, Saturated, and Stagnant: Effect of Milldams on Upstream Riparian Groundwater Hydrologic and Mixing Regimes. Water Resources Research <a href="https://doi.org/10.1029/2022WR033038">https://doi.org/10.1029/2022WR03303</a></li><br /> <li>Dey, S., Saksena, S., Winter, D., Merwade, V. and McMillan, S., 2022. Incorporating Network Scale River Bathymetry to Improve Characterization of Fluvial Processes in Flood Modeling. Water Resources Research, p.e2020WR029521.</li><br /> <li>Hanna, K., Paul, M., Negahban-Azar, M., and Shirmohammadi, A. (2021). Developing a Decision Support System for Economic Analysis of Irrigation Applications in Temperate Zones. <em>Water</em>. <a href="https://doi.org/10.3390/w13152044">https://doi.org/10.3390/w13152044</a></li><br /> <li>Paul, M., Rajib, A., Negahban-Azar, M., Shirmohammadi, A., Srivastava, P. 2021. Improved Agricultural Water Management in Data-scarce Semi-arid Watersheds: Value of Integrating Remotely Sensed Leaf Area Index in Hydrological Modeling. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.148177</li><br /> <li>Paul, M., M. Negahban-Azar, A. Shirmohammadi, and H. Montas. 2021. Developing a Multicriteria Decision Analysis Framework to Evaluate Reclaimed Wastewater Use for agricultural Irrigation: The Case Study of Maryland. Hydrology 8(4):18p.</li><br /> <li>Huang, Y., R. Bawa, J. Mullen, N. Hoghooghi, L. Kalin, P. Dwivedi (2022), “A Stochastic Dynamic Optimization Approach for Understanding Expected Land Use Changes to Meet Potential Water Quality Regulations: A Case Study from Georgia, United States”, Agricultural Water Management. 271, 107799.</li><br /> <li>Bian, Z., S. Pan, Z. Wang, Y. Yao, R. Xu, H. Shi, L. Kalin, C. Anderson, D. Justic, S. Lohrenz, H. Tian (2022), “A century-long trajectory of phosphorus loading and export from Mississippi River Basin to the Gulf of Mexico: Contributions of multiple environmental changes”, Global Biogeochemical Cycles. 36, e2022GB007347. https://doi.org/10.1029/2022GB007347.</li><br /> <li>Haas, H., L. Kalin, P. Srivastava (2022), “Improved Forest Dynamics Leads to Better Hydrological Predictions in Watershed Modeling”, Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.153180.</li><br /> <li>Haas, H., M. Reaver, R. Karki, L. Kalin, P. Srivastava, D. Kaplan, C.A. Gonzalez-Benecke (2021), “Improving the representation of forests in hydrological models”, Science of Total Environment. https://doi.org/10.1016/j.scitotenv.2021.151425.</li><br /> <li>Haas, H, F. Dosdogru, L. Kalin, H. Yen (2021), “Land use and land cover input data affects the prediction of ecologically relevant flows in hydrologic modeling Corresponding Author”, Water. 13(21), 2947. https://doi.org/10.3390/w13212947.</li><br /> <li>Karki, R., P. Srivastava, L. Kalin, S. Mitra, S. Singh (2021), “Assessment of impact in groundwater levels and stream-aquifer interaction due to increased groundwater withdrawal in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin using MODFLOW”, Journal of Hydrology: Regional Studies. Vol 34. https://doi.org/10.1016/j.ejrh.2021.100802.</li><br /> <li>Ramesh, R. L. Kalin, M. Hantush, A. Chaudhary (2021), “A Secondary Assessment of Sediment Trapping Effectiveness by Vegetated Buffers”, Ecological Engineering. Vol 159. <a href="https://doi.org/10.1016/j.ecoleng.2020.106094">https://doi.org/10.1016/j.ecoleng.2020.106094</a>.</li><br /> <li>Wagner, K.L., T.J. Gentry, R.D. Harmel, E.C. Pope, L.A. Redmon. 2021<em>. </em>Grazing effects on bovine-associated and background fecal indicator bacteria levels in edge-of-field runoff.<em> Water 2021, 13, 928.</em> <a href="https://doi.org/10.3390/w13070928"><em>https://doi.org/10.3390/w13070928</em></a><em>.</em></li><br /> </ol><br /> <ol start="71"><br /> <li>Boyer EW, MA Moritz, and MG Brown (2022). Smoke deposition to water surfaces drives hydrochemical changes. Hydrological Processes, 36(6), e14626, DOI: 10.1002/hyp.14626</li><br /> <li>Clark KH, DD Iwanowicz, LR Iwanowicz, SJ Mueller, JM Wisor, C Bradshaw-Wilson, WB Schill, JR Stauffer, Jr., and EW Boyer (2022). Freshwater unionid mussels threatened by predation of Round Goby (Neogobius melanostomus). Scientific Reports, 12, 12859, DOI: 10.1038/s41598-022-16385-y (plus supporting dataset at HydroShare public data repository, DOI: 10.4211/hs.e46d4769a8a346fcaed7a27fcceb20ad)</li><br /> <li>Clark KH, JM Wisor, SJ Mueller, C Bradshaw-Wilson, EW Boyer, and JR Stauffer, Jr. (2021). Status of freshwater mussels (Unionidae) in the French Creek watershed, USA at the onset of invasion by Round Goby, Neogobius melanostomus. Water, 13(21), 3064; DOI: 10.3390/w13213064</li><br /> <li>Zhang K, J. Shen, L Guo, EW Boyer, CR Mello, P Lan, H Liu, J Gao, and B Fan (2021). Flood drainage rights in watersheds based on the harmonious allocation method. Journal of Hydrology, DOI: 10.1016/j.jhydrol.2021.126627</li><br /> <li>Zhang L, G Qin, P Lan, L Yang, CR Mello, EW Boyer, and L Guo (2021). Evaluation of three gridded precipitation products in a data scarce region in mountainous areas of the west China. Remote Sensing, 13:3795, DOI:10.3390/rs13193795</li><br /> </ol><br /> <p><em><span style="text-decoration: underline;">2) Thesis/Dissertation:</span></em></p><br /> <ol><br /> <li>Timothy McGill. Assessing machine learning utility in predicting hydrologic and nitrate dynamics in karst agroecosystems, MS Student (Primary Advisor, Fall 2019-May 2022).</li><br /> <li>Rosalia Agioutanti. Classifying and mapping aquatic vegetation in heterogenous stream ecosystems using visible and multispectral uav imagery, MS Student (Primary Advisor, Fall 2019-May 2022).</li><br /> <li>Gina DeGraves. Sediment nitrogen dynamics in backwater wetland confluences of a regulated river, MS Student (Primary Advisor, Summer 2019-Fall 2021).</li><br /> <li>Lorena Lacerda. 2021. Using remote sensing to develop irrigation scheduling tools for variable rate irrigation, Ph.D. Dissertation, University of Georgia, pp 183.</li><br /> <li>Shahed Behrouz, M., 2022. Improving Predictions of Stormwater Quantity and Quality through the Application of Modeling and Data Analysis Techniques from National to Catchment Scales, Ph.D. Dissertation, Virginia Tech, pp 203.</li><br /> <li>Umme Fatema Piu. 2022. Evaluating evapotranspiration rates for corn and cotton in thermo-limited climate of southwest Kansas. MS, Kansas State University.</li><br /> <li>Dey, S., 2021. Enabling large-scale hydrologic and hydraulic modeling through improved topographic representation. PhD dissertation, Purdue University.</li><br /> <li>Phillippe, A.J. 2022. Determining bacterial and nutrient concentrations and loadings of surface runoff from differing grazer access and vegetative cover in Northcentral Oklahoma. MS Thesis, Oklahoma State University.</li><br /> </ol><br /> <p><em><span style="text-decoration: underline;">3) Proposals Awarded/Submitted:</span></em></p><br /> <ol><br /> <li>Fox, J., Ford, W., Mahoney, D., Armstead, M., Dadi, G. BPE-Track 3: Inclusive Mentoring Hub for Enabling Pathways from Inner-City and Rural Appalachian Households to Engineering in Kentucky and West Virginia. NSF-BPE. $799,445. Role Co-Investigator. July 2022-July 2027</li><br /> <li>Ford, W. Using edge-of-field data and modeling to inform H2Ohio. Ohio department of agriculture $150,000 (as sub-award from USDA-ARS). Role: Principal Investigator.</li><br /> <li>Fox, J., Mahoney, D., Ford, W., Armstead, M. RII-BEC: Undergraduate research as a model of excellence to broaden STEM participation in EPSCoR jurisdictions: What are the mentoring costs? NSF RII-BEC. $1,000,000. Role Co-Investigator.</li><br /> <li>Improving the Sustainability of Georgia Cotton by Increasing Nitrogen and Water Use Efficiencies, Georgia Cotton Commission, 2021-2022, $58,000, Vellidis PI</li><br /> <li>Expansion of an Irrigation Scheduling Application to the U.S, Cotton Incorporated, 2021-2022, $50,000, Vellidis PI</li><br /> <li>Incorporating Volumetric Water Content (Capacitance) Sensors into the Irrigator Pro-Based Irrigation Scheduling Tool, 2021-2022, $18,000, Vellidis PI</li><br /> <li>Making Irrigator Pro an Easier-to-Use Irrigation Scheduling Tool, 2021-2022, Southern Peanut Research Initiative, $25,000, Vellidis PI.</li><br /> <li>Sample, D.J. and Scott, D., Vibrant Virginia-Improving the Resilience of Stormwater Treatment in Fredericksburg: Amount: $60,000. Sponsor: VT Center for Economic and Community Engagement, 1/01/2021 - 06/30/2022.</li><br /> <li>Shahed Behrouz, M., 2021. New Conceptualizations of Catchment-Scale Stormwater Pollution Generation Processes, Virginia Water Resources Research Center Competitive Grant, $7,000, 10/1/21-8/31/22. </li><br /> <li>Cardace, D., Pradhanang, S. M., and Moseman-Valtiera, S., Planetary Methane in Ultramafic Contexts: Searching for Cyclicity in Methane Emissions at a Planetary Analog Site in Northern California, NASA-EPSCoR $735,000 (6/2022-6/2025)</li><br /> <li>Savage, B., Pradhanang, S. M., Boving, T. Mapping Bedrock and Saltwater Intrusion in Rhode Island, USGS $90,000 (09/2021-08/2022)</li><br /> <li>Savage, B., Pradhanang, S. M., Boving, T., Mapping Bedrock and Saltwater Intrusion in Rhode Island USGS $117,337 (09/2022-08/2023)</li><br /> <li>Pradhanang, S., Kumar, R, and Rashid T, Floating Treatment Wetland System (FTWS) - Sustainable green technology to remediate polluted surface water bodies in the COVID 19-era , Asia- Pacific Network $78,000 (09/2021-08/2023)</li><br /> <li>Pradhanang, S. M., Boving, T., and Savage, B. The Rhode Island Water Resources Board (RIWRB) and University of Rhode Island (URI) Statewide Water Withdrawal Data Enhancement and Database Development Project. RIWRB-USGS $197,488 (10/20-09/22)</li><br /> <li>T Franti, A. Sheshukov, J. Lory, R. Cruse. Developing and assessing innovative ephemeral gully erosion control practices. (2021-2023). USDA $344,538</li><br /> <li>R.L. North, A. Ohler, L. McCann, T. Moore, A. Sheshukov. Valuing Water Quality Improvements in Heartland Reservoirs. (2022-2025) EPA $741,285</li><br /> <li>Pradhanang, S.M., Liu, P. Water Availability through the Integration of Hydrologic Model and Water Management Optimization Tool for Chipuxet River Watershed, Rhode Island. RIWRC-USGS. (2022-2023) USGS $50,000</li><br /> <li>USDA-Cooperative Agreement. Fuka, D.R., Z.M. Easton, R.R. White. Developing and evaluating rapidly deployable inexpensive weather, soil moisture, shock, and streamflow sensors to aid the monitoring, inspection, and rehabilitation of aging dams. $225,000. Dec 2021-Nov 2022.</li><br /> <li>USDA-Cooperative Agreement. Easton, Z.M. Modeling the Lake Champlain Basin CEAP watersheds to understand and predict conservation effects on legacy phosphorus. $134,223. Oct 2021-Sept 2023.</li><br /> <li>Virginia Tech CALS Strategic Plan Advancement. Easton, Z.M., R.R. White, K. Hamed, D.R. Fuka, M. Eick. Eyes in the Sky and Boots on the Ground: Collaborative Technologies for Monitoring and Managing Livestock Pastures. $60,000. Oct 2021-May 2023.</li><br /> <li>NSF CPS (Cyber-Physical Systems). White, R.R., E. Feuerbacher, Z.M. Easton. Collaborative Research: CPS: Medium: Greener Pastures: A pasture sanitation cyber physical system for environmental enhancement and animal monitoring. $998,232. Jan 2022-Dec 2024.</li><br /> <li>Lewis, K., K. Wagner, A. Berthold, P. DeLaune, J. Bell, D. Miller Sustainable. Agricultural Intensification and Enhancement through the Utilization of Regenerative Agricultural Management Practices. Amount: $583,438 (Total Award: $10,000,000). Sponsor: USDA-NIFA Sustainable Ag Systems Program, 9/1/2021-8/31/2026.</li><br /> <li>Wagner, K. Dam Analysis Modernization of Tools, Applications, Guidance, and Standardization (DAM-TAGS) Project – Year 1. Amount: $478,238. Sponsor: USDA-ARS Cooperative Agreement, 6/10/2021-6/9/2022.</li><br /> <li>Wagner, K., R. Bonett, A. Sewell, J. Gonzalez Estrella, S. Kim, A. Dzialowski. Oklahoma Water Resources Research Institute Program (USGS Base Funds FY21). Amount: $125,000. Sponsor: USGS, 9/1/2021-8/31/2022.</li><br /> <li>Mirchi, A, K. Wagner, S. Taghvaeian, Sarah Alian, R. Bailey. Conjunctive Freshwater-Saltwater Management for Climate-Resilient Agroecosystems. Amount: $181,568 (Total Award: $749,786). Sponsor: USDA-NIFA Foundational Program, 12/31/2021-12/12/2025.</li><br /> <li>Wagner, K., S. Sharma, S. Taghvaeian, S. Frazier, J. Warren, A. Mirchi. Oklahoma Master Irrigator Program and Ogallala Aquifer Study. Amount: $150,000. Sponsor: Oklahoma Conservation Commission, 7/1/2021-6/30/2022.</li><br /> <li>Reuter, R., K. Wagner, L. Goodman, C. Duchardt, B. Murray. Increasing the pace & scale of adoption of prescribed grazing through virtual fence technology. Amount: $93,188 (Total Award: $1,365,774). Sponsor: USDA-NRCS Conservation Innovation Grant, 7/1/2022-6/30/2025.</li><br /> </ol>Impact Statements
Date of Annual Report: 11/07/2023
Report Information
Period the Report Covers: 10/01/2022 - 09/30/2023
Participants
● Participants:In person attendees (11):
● Fouad Jaber - Texas A&M
● Rafael Muñoz-Carpena - University of Florida
● Francois Birgand - NCSU
● Jasmeet Lamba - Auburn University
● Latif Kalin - Auburn University
● Aleksey Sheshukov - Kansas State University
● Emine Fidan - University of Tennessee
● Eban Bean - University of Florida
● Young Gu Her - University of Florida
● Sanjiv Kumar - Auburn University
● Rakesh Kumar - Auburn University
Virtual Attendees (13):
● Soni Pradhanang - University of Rhode Island
● Adel Shirmohammadi - University of Maryland
● Bill Ford - University of Kentucky
● Zach Easton - Virginia Tech
● Elizabeth Boyer - Penn State University
● Arun Bawa - Texas A&M
● Raghavan Srinivasan - Texas A&M
● Natalie Nelson - North Carolina State University
● Sara McMillan - Iowa State University
● Prem Parajuli- Mississippi State University
● Rabin Bhattarai- University of Illinios-UC
● Mary Savin - University of Arkansas
● Josef Gorres - University of Vermont
Brief Summary of Minutes
The annual meeting was held in the College of Forestry, Wildlife and Environment (CFWE) at Auburn University in Auburn, AL on September 12-13, 2023 with participation of 13 members on Zoom and 11 members in-person. The meeting agenda included state reports of accomplishments and active projects, discussions on collaborative activities, special collection of journal papers on BMP monitoring and management, a proposal for the next cycle of this Hatch project, and potential submission of a proposal for Experiment Station Section Award for Excellence in Multistate Research. The meeting featured a workshop on the impact reporting provided by the Multistate Research Fund Impacts Program. Prior to the meeting, the members submitted their state reports. A brief overview of the activities during the meeting is below:
- The meeting started with Dr. Paul Patterson, Dean of the College of Agriculture and Director of the Ag Experimental Station of Auburn University, welcoming the participants to Auburn and presenting an overview of college mission and activities. Then, Dr. Mary Savin, a NIFA advisor, and Dr. Fouad Jaber, S1089 chair, provided recaps of USDA-NIFA’s Hatch program and a history of prior S1089 projects, respectively. A recap of the annual S1089 meeting in Houston in 2022 completed a morning part of the meeting.
- After the break, S1089 members (in person and virtual) reported on their state activities and accomplishments, including active projects, funded proposals, and students and publications. A discussion on multistate collaborative efforts followed the individual reporting.
- Impact writing workshop. The afternoon of Day 1 was dedicated to the impact writing workshop virtually led by Sara Delheimer (delheimer@colostate.edu), a program coordinator and impact writer for the Multistate Research Fund Impacts Program (www.mrfimpacts.org). Ms. Delheimer shared the best practices on how to better articulate the impact of multistate projects and activities, to demonstrate the value to stakeholders, funding agencies, and the general public. Examples of different impact statements from Hatch Multistate project reports were presented and discussed.
- Kalin and a director of the Alabama Water Center led a field trip of the LID facility in Auburn. This concluded Day 1.
- Journal special collection. Day 2 was fully dedicated to the discussion on journal special collection started in 2021.
- Journal of Environmental Management (Elsevier, IF=8.7) was selected
- Fouad updated on communication with the journal and informed of the need to submit a proposal for approval
- 16 initial contributions were identified from the project members on new insights and gaps in BMP research at field and watershed scales including monitoring, modeling and interdisciplinary and translational studies, specifically the following topics were of particular interest:
- Advances in BMP design
- Advances in BMP monitoring
- Quantification of BMP ecosystem services
- Achieving Nutrient and Sediment Reduction Goals Through Watershed Management
- Limitations and uncertainties in predicting mitigation of runoff contaminants with BMPs
- Alternative water resources in the context of climate change
- Legacy nutrients and sediments impacting the efficiency of BMP performance
- Using advanced techniques in identifying and targeting BMPs in urban, agricultural and forested watersheds.
- Proposed guest editors are: Fouad Jaber (Texas), Latif Kalin (Alabama), Soni Pradhanang (Rhode Island), Aleksey Sheshukov (Kansas).
- Hatch project award. S1089 members expressed their interest in exploring nomination for the Experiment Station Section Award for Excellence in Multistate Research. Project officers were tasked to discuss the conditions of the award and prepare a draft of nomination documents.
- Next project cycle proposal. Current S1089 project ends in September 2025. To avoid a gap in project continuation and funding, a new proposal should be prepared shortly after the end of the 2023-24 fiscal year. Project officers and a leadership group will work on drafting the proposal in 2024.
- Next annual meeting location: Kansas City, KS
- Project officers will communicate with NIFA for the meeting location and potential participation. As an alternative, Dr. Sheshukov will organize a meeting at the K-State's campus in Olathe, KS.
- Annual S1089 project report: Need to be submitted within 60 days after the annual meeting. Project officers will compile individual state submissions and summarize the accomplishments.
- Election: Dr. Emine Fidan was nominated by Dr. Munoz-Carpena and elected project Secretary for 2023-24. This concluded Day 2. Meeting was adjourned.
Elected officers (2023-2024):
- Secretary: Emine Fidan (U Tennessee)
- Vice Chair: Latif Kalin (Auburn U)
- Chair: Aleksey Sheshukov (KSU)
Past Chairs:
- Soni Pradhanang (2020-2021)
- Rafa Munoz-Carpena (2021-2022)
- Fouad Jaber (2022-2023)