NCCC211: Cover Crops to Improve Agricultural Sustainability and Environmental Quality in the Upper Midwest

(Multistate Research Coordinating Committee and Information Exchange Group)

Status: Active

SAES-422 Reports

Annual/Termination Reports:

[04/20/2021] [04/13/2022] [06/13/2023] [04/10/2024]

Date of Annual Report: 04/20/2021

Report Information

Annual Meeting Dates: 02/23/2021 - 02/25/2021
Period the Report Covers: 01/01/2020 - 12/31/2020

Participants

Andrea Basche, UNL, Marisol Berti, NDSU, Kendall Lamkey, project advisor, Eileen Kladivko, Purdue, Mark Licht, Iowa State, Peter Tomlinson, Kansas State, Dean Baas, Michigan State, Anna Cates, UMN, Shalamar Armstrong, Purdue, DeAnn Presley, Kansas State

Brief Summary of Minutes

Accomplishments

<p>Michigan:</p><br /> <p><span style="font-weight: 400;">Michigan State University (MSU) continued its commitment to cover crop research, publications and outreach in 2020. In 2020, a collaborative project between MSU and University of Michigan researchers adds another institution to the list. Activities included 26 on-going research projects, 7 scientific/society presentations, 7 peer-reviewed publications, 1 thesis, 5 Extension/outreach publications, 23 news articles, 10 in-person farmer meetings, 4 virtual farmer meetings/field days, 15 videos and 9 podcasts. Research projects include evaluation of cover crops for: 1) interseeding of cover crop into corn; 3) cover crop herbicide tolerance; 4) management across commodities including field crops, vegetables and fruit; 5) forages/feeds; 6) soil fertility; 7) soil health/science/biology; and 8) pest/disease management. MSU cover crop projects were in both conventional and organic systems. Forty-four faculty, staff and students from Plant, Soils and Microbial Sciences; Horticulture; Entomology; W.K. Kellogg Biological Station and Extension were participating in cover crop research. The MSU Michigan cover crop website (www.covercrops.msu.edu) increased to 32,095 pageviews from March 2020 &ndash; February 2021 compared to 22,073 during the same period the previous year. Of the Michigan events reporting a total of 701 participants attended in-person and virtual events. COVID restrictions reduced both events and participation in 2020 as MSU pivoted to on-line delivery methods. MSU also educated hundreds of undergraduate and graduate students through 15 different courses in the Departments of Plant, Soil, and Microbial Science, Entomology, and Horticulture that include cover crops in their curriculum.</span></p><br /> <p><span style="font-weight: 400;">Number of graduate students and post docs involved in cover crop work: 4 PhD, 4 MS, 2 Post Docs</span></p><br /> <p><span style="font-weight: 400;">Number of presentations : 45</span></p><br /> <p><span style="font-weight: 400;">Number of publications : 7</span></p><br /> <p><span style="font-weight: 400;">Iowa:</span></p><br /> <p><span style="font-weight: 400;">Cover crops continue to have a focus for the research, extension and teaching in Iowa. This work has and continues to be integrated both across research, teaching and extension as well as across disciplines. Current activities include economists, social scientists, plant pathologists, entomologies, plant breeders, agricultural engineers, and agronomists. Our focus has largely been on integrating cover crops into the corn and soybean centric cropping system found in Iowa. However, there are ongoing efforts exploring new cover crops and modifying existing cropping systems in a way to build a more resilient system. Researchers are looking at the role of allelochemicals, disease implications of planting green, changes to cover crop management, changes to corn management following cover crops, weed suppression from cover crops, perennial cover crop systems, and nitrogen export from cover crops systems.</span></p><br /> <p><span style="font-weight: 400;">Number of graduate students and post docs involved in cover crop work: MS/PHD = 3; Post doc = 2</span></p><br /> <p><span style="font-weight: 400;">Number of presentations : 105</span></p><br /> <p><span style="font-weight: 400;">Number of publications : 10</span></p><br /> <p><span style="font-weight: 400;">Indiana:</span></p><br /> <p><span style="font-weight: 400;">Cover crop interest and adoption continues to grow in Indiana (~ 950,000 adopted acres).&nbsp; Therefore, the demand for training and services related to cover crops by the Conservation Partnership continues to increase. The Indiana Conservation Partnership includes NRCS, Soil and Water Conservation Districts (SWCD), Conservation Cropping Systems Initiative (CCSI), Indiana State Department of Agriculture (ISDA), State Soil Board, and Purdue Extension. Collectively in 2020, the conservation partnership provided technical training, logistical and promotional support for 38 events, reaching nearly 4650 Individuals. To further strengthen cover crop training and services to farmer and trainers, Purdue research scientist conducted approximately 13 distinct research projects related to cover crop adoption,&nbsp; soil health, cropping systems climate resilience, syncrony of N and P release from cover crop residue, water quality, forage quality, weed supression, and cover crop economics. Additionally, seven cover crop related papers were accepted or published in scientific journals, eight extension and outreach publications, and 35 extension or outreach presentations that reached approximately 2,000 individuals. Ongoing research in cover crops facilitated the graduate education of 11</span> <span style="font-weight: 400;">graduate students (5 Ph.D., 6 M.S.).&nbsp;</span></p><br /> <p><span style="font-weight: 400;">Wisconsin:</span></p><br /> <p><span style="font-weight: 400;">In Wisconsin, we have several concurrent efforts in cover crop research and outreach. First, a coordinated group [Cover Crop Research and Outreach Program (CCROP)] was established and maintains active monthly meetings to organized cover crop efforts within UW-Madison, the Michael Fields Institute, and USDA-ARS (Dairy Forage Research Center). Major research efforts include involvement in the Precision Sustainable Agriculture (PSA; precisionsustainableag.org), NRCS-CIG project (cover crop use in organic agricultural systems), and multiple projects funded by the Wisconsin Fertilizer Research Council. Major extension efforts include presentations through the Wisconsin Agribusiness Classic; Soil, Water, &amp; Nutrient Management meetings; OGrains conference; Discovery Farms webinar series; and MOSES conference.</span></p><br /> <p><span style="font-weight: 400;">Number of graduate students and post docs involved in cover crop work: 3 graduate students, 1 postdoc</span></p><br /> <p><span style="font-weight: 400;">Number of presentations : 12</span></p><br /> <p><span style="font-weight: 400;">Number of publications : 2</span></p><br /> <p><span style="font-weight: 400;">Nebraska:</span></p><br /> <p><span style="font-weight: 400;">Cover crop related efforts continued to expand in Nebraska in 2020. A highlight of Nebraska&rsquo;s efforts includes collaborative work with research and extension staff through the On-Farm Research Network. The network partners with farmers to conduct on-farm research in randomized, replicated, field-scale strips. Of the 93 experiments published in the 2020 report, 25 were cover crop-related, investigating various aspects of cover crop management such as interseeding, species comparisons, grazing, and cover crops in different crop rotations. We estimate that there are eleven graduate students involved in cover crop related research across agronomy, soil science, animal science and entomology. In spite of the pandemic, we estimate 35 presentations, events and media promoted cover crop work in the state. These presentations included the first ever cover crops and soil health conference in Western Nebraska/Panhandle Research and Extension Center as well as &gt;120 individuals attending the cover crops and soil health focused on-farm research network meeting. The 23 publications for the state included work on cover crops for weed suppression, estimating the biomass/yield impacts of varied maturity corn and soybean, cover crops and grazing, and allelopathy.</span></p><br /> <p>&nbsp;</p><br /> <p><span style="font-weight: 400;">Number of graduate students and post docs involved in cover crop work: 11</span></p><br /> <p><span style="font-weight: 400;">Number of presentations : 35<br /></span></p><br /> <p><span style="font-weight: 400;">Number of publications : 23</span></p><br /> <p>&nbsp;</p><br /> <p><span style="font-weight: 400;">North Dakota:</span></p><br /> <p><span style="font-weight: 400;">Research on cover crops in North Dakota includes four of the objectives in this regional committee: 1) assess the impact of cover crops on&nbsp; soil health, and agronomic production and profitability; 2) develop recommendations for cover crops establishment (rates, timing, application method) across production systems; and 3) evaluate cover crops for grazing</span></p><br /> <p><span style="font-weight: 400;">Soil erosion by wind is a serious problem in North Dakota especially in winter with little snow cover or dry springs. Cover crops are improving soil health, reducing erosion, and increasing sustainability of cropping systems. In the long-term cover crops will help reduce N fertilization and improve water quality, and provide forage for grazing.&nbsp;</span></p><br /> <p><span style="font-weight: 400;">Research on cover crops interseeding has also increased in the last few years and many farmers are interseeding cover crops in standing corn, soybean, and sunflower either by using a interseeder drill or a broadcast system (aerial or modified sprayer).&nbsp; Interseeding cover crops into standing corn or soybeans is an alternative for corn-soybean farmers, since there is no time to establish a cover crop after corn or soybean harvest.&nbsp; However, most research is showing that there is not enough light under the corn or soybean canopy to support the growth of a cover crop interseeded early in the season. Thus, research now is focusing in 60&rdquo; corn and sunflowers for an adequate establishment of cover crops to improve soil health and as forage for grazing.</span></p><br /> <p><span style="font-weight: 400;">Total area of cover crops is unknown but we believe it easily surpassed 500,000 acres in North Dakota. Cover crops adoption in North Dakota is increasing dramatically thanks to the many researchers (14) and graduate students (10) involved in cover crops research and extension in the state. Researchers were able to secure $215,610 in new funding for cover crops research in 2020, Researchers working in cover crops and soil health published 14 peer-reviewed articles, 6 extension publications, 11 presentation in conferences, workshops and symposiums, 5 field days, and 49 videos. Many webinars were organized during the season in replacement of in-person activities.</span></p><br /> <p><span style="font-weight: 400;">Minnesota:</span></p><br /> <p><span style="font-weight: 400;">Promotion of cover crops in Minnesota is very strong. State programs include 5 Board of Water and Soil Resources Cover Crop Demonstration Grants, many local cover crop cost-share programs, and a scholarship for Farm Business Management for cover crop users. Within the University of Minnesota system, researchers have presented cover crop education at statewide UMN conferences (Nutrient Management, Nitrogen, Soil Management Summit) and the Institute for Agricultural Professionals, as well as numerous local events. Researchers have pursued work on cover crops in a variety of contexts:&nbsp; incorporating cover crops into corn-soybean rotations via interseeding; managing cover crops in a prevent-plant scenario; incorporating manure with cover crops; evaluating dual-use winter annual cover crops; and describing cover crop impacts on nitrogen leaching in different regions of the state. Satellite imagery has been used since 2015 to describe cover crop success across the state, and these results will inform outreach and policy around cover crop incentives. One new Midwest Cover Crop Council Cover Crop Recipe was published in 2020. Non-governmental farmer-led organizations have also offered numerous peer-to-peer learning opportunities for farmers interested in cover crops. </span></p><br /> <p><span style="font-weight: 400;">Number of graduate students and post docs involved in cover crop work: 11</span></p><br /> <p><span style="font-weight: 400;">Number of presentations : 31<br /></span></p><br /> <p><span style="font-weight: 400;">Number of publications : 9<br /></span></p><br /> <p><span style="font-weight: 400;">Kansas: </span></p><br /> <p><span style="font-weight: 400;">Currently in Kansas there are 14 university researchers with active research projects ranging in topics from erosion control, water quality, N and P cycling, weed suppression, evaluation in cropping systems, effects on soil moisture, soil health, companion planting with winter wheat, control of charcoal rot in soybean, and forage production and quality. Numerous in person and virtual extension presentations featuring cover crop research were made to producers and agricultural professionals. Two Ph.D students successfully defended their dissertations on work involving cover crops. Kansas cover crop work was published in four different peer-reviewed journals as well as extension and experiment station reports. K-State faculty received grants for state and federal entities to fund cover crop research in Kansas and to support graduate education.&nbsp;</span></p><br /> <p>&nbsp;</p><br /> <p><strong>Metrics:</strong></p><br /> <p><span style="font-weight: 400;">Graduate students and Postdoctoral Researchers in Cover Crops Research:</span></p><br /> <p><em><span style="font-weight: 400;">Number of MS students: 3</span></em></p><br /> <p><em><span style="font-weight: 400;">Number of Ph.D. students: 4</span></em></p><br /> <p><em><span style="font-weight: 400;">Number of Postdoctoral Researchers:2</span></em></p><br /> <p><span style="font-weight: 400;">Number of presentations</span><span style="font-weight: 400;">: 40</span></p><br /> <p><span style="font-weight: 400;">Number of publications</span><span style="font-weight: 400;">: 11</span>&nbsp;</p><br /> <p>&nbsp;</p>

Publications

<p>Michigan</p><br /> <ul><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Schramski, J., Sprague, C., &amp; Renner, K. (2020). Integrating fall-planted cereal cover crops and preplant herbicides for glyphosate-resistant horseweed (Conyza canadensis) management in soybean. </span><em><span style="font-weight: 400;">Weed Technology,</span></em><span style="font-weight: 400;"> 1-8. doi:10.1017/wet.2020.117</span><span style="font-weight: 400;">Acharya, J., T.B. Moorman, T.C. Kaspar, A.W. Lenssen, and A.E. Robertson. 2020.&nbsp; Effect of cover crop species and rotation on corn and soybean seedling disease and yield in no-till system. Plant Disease 104:677-687. </span><a>https://doi.org/10.1094/PDIS-09-19-1904-RE</a><span style="font-weight: 400;">Banik, C., C.A. Bartel, D.A. Laird, K.J. Moore, and A.W. Lenssen. 2020. Perennial cover crop influences on soil C and N and maize productivity.&nbsp; Nutrient Cycling in Agroecosystems 116:135-150.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Schramski, J., Sprague, C., &amp; Renner, K. (2020). Effects of fall-planted cereal cover-crop termination time on glyphosate-resistant horseweed (Conyza canadensis) suppression. Weed Technology, 1-11. doi:10.1017/wet.2020.103</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Moore, V.M., Maul, J.E., Wilson, D., Curran, W.S., Brainard, D.C., Devine, T.E. and Mirsky, S.B., 2020. Registration of &lsquo;Purple Bounty&rsquo; and &lsquo;Purple Prosperity&rsquo; hairy vetch. </span><em><span style="font-weight: 400;">Journal of Plant Registrations</span></em><span style="font-weight: 400;">, </span><em><span style="font-weight: 400;">14</span></em><span style="font-weight: 400;">: 340-346.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Tarrant, AR; Brainard, DC Hayden, ZD. 2020. Cover Crop Performance between Plastic-mulched Beds: Impacts on Weeds and Soil Resources. </span><em><span style="font-weight: 400;">HORTSCIENCE</span></em><span style="font-weight: 400;"> 55:1069-1077.&nbsp; DOI: 10.21273/HORTSCI14956-20</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Nguyen T.T.L. and A.N. Kravchenko 2021. Effects of cover crops on soil CO2 and N2O production across topographically diverse agricultural landscapes in corn-soybean-wheat organic transition. </span><em><span style="font-weight: 400;">European J. of Agronomy</span></em><span style="font-weight: 400;"> 122, article 126189.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Mennan, H; Jabran, K; Zandstra, BH; Pala, F. 2020. Non-Chemical Weed Management in Vegetables by Using Cover Crops: A Review. </span><em><span style="font-weight: 400;">Agronomy</span></em> <strong>2020</strong><span style="font-weight: 400;">, </span><em><span style="font-weight: 400;">10</span></em><span style="font-weight: 400;">(2), 257;</span><a href="https://doi.org/10.3390/agronomy10020257"> <span style="font-weight: 400;">https://doi.org/10.3390/agronomy10020257</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Brooker, AP, Renner, KA; Basso, B. 2020. Interseeding cover crops in corn: Establishment, biomass, and competitiveness in on-farm trials. </span><em><span style="font-weight: 400;">AGRONOMY JOURNAL</span></em><span style="font-weight: 400;"> 112: 3733-3743. DOI: 10.1002/agj2.20355</span></li><br /> </ul><br /> <p>&nbsp;Indiana</p><br /> <ul><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Nichols, V., R. Martinez-Feria, D. Weisberger, S. Carlson, B. Basso, and A. Basche. 2020. Cover crops and weed suppression in the US Midwest: A meta-analysis and modeling study. AriXiv. doi: 10.31220/osf.io/43b9n.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Nichols, V., L. English, S. Carlson, S. Gailans, and M. Liebman. 2020. Effects of Long-Term Cover Cropping on Weed Seedbanks. Front. Agron. 2:591091. doi: 10.3389/fagro.2020.591091.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Muhammed, Y.A., S. Patel, H.L. Matthees, A.W. Lenssen, B.L. Johnson, M.S. Wells, F. Forcella, M.T. Berti, and R.W. Gesch. 2020. Biomass and soil N dynamics in response to interseeded oilseed cover crops in a maize-soybean system. Agronomy 10, 1439; doi:10.3390/agronomy10091439&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Muhammed, Y.A., H.L. Matthees, R.W. Gesch, S. Patel, F. Forcella, K. Aasand, N. Steffl, B.L. Johnson, M.S. Wells, and A.W. Lenssen. 2020. Establishing winter annual cover crops in the upper Midwest, USA: Interseeding into maize and soybean. Agronomy Journal 112:719-732. doi: 10.2134/agronj2019.06.0415</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Moore, K.J., C.L. Kling, and D.R. Raman. 2020. A Midwest USA Perspective on Von Cossel et al.&rsquo;s Prospects of Bioenergy Cropping Systems for A More Social-Ecologically Sound Bioeconomy.&nbsp; Agronomy 10:1658; doi:10.3390/agronomy10111658</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Forcella, F., S. Patel, A.W. Lenssen, C. Hoerning, M.S. Wells, R.W. Gesch, and M.T. Berti. 2021. Pollinator visitation of flowering winter oilseeds (field pennycress and winter camelina). Journal of Entomology. doi:10.111/jen.12854.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Casler, M.D., K.P. Vogel, D.K. Lee, R.B. Mitchell, P.R. Adler, R.M. Sulc, K.D. Johnson, R.L. Kallenbach, A.R. Boe, R.D. Mathison, K.A. Cassida, D.H. Min, and K.J. Moore. 2020. Nitrogen demand associated with increased biomass yield of switchgrass and big bluestem. BioEnergy Research 13:120-131; doi.org/10.1007/s12155-019-10081-y</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Bartel, C.A., S.V. Archontoulis, A.W. Lenssen, K.J. Moore, I.L. Huber, D.A. Laird, S. Fei, and P.M. Dixon.&nbsp; 2020.&nbsp; Modeling perennial groundcover effects on annual maize grain crop growth with the Agricultural Production Systems sIMulator. Agronomy Journal 112:1895&ndash;1910.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Banik, C., C.A. Bartel, D.A. Laird, K.J. Moore, and A.W. Lenssen. 2020. Perennial cover crop influences on soil C and N and maize productivity.&nbsp; Nutrient Cycling in Agroecosystems 116:135-150.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Acharya, J., T.B. Moorman, T.C. Kaspar, A.W. Lenssen, and A.E. Robertson. 2020.&nbsp; Effect of cover crop species and rotation on corn and soybean seedling disease and yield in no-till system. Plant Disease 104:677-687. </span><a href="https://doi.org/10.1094/PDIS-09-19-1904-RE"><span style="font-weight: 400;">https://doi.org/10.1094/PDIS-09-19-1904-RE</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Nevins, C., Lacey, C. L., &amp; Armstrong, S. D. 2021. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems. </span><em><span style="font-weight: 400;">European Journal of Agronomy</span></em><span style="font-weight: 400;">. (Accepted)</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Sadeghpour, A., Adeymi, O., Hunter, D., Lua, Y., &amp; Armstrong, S. D. (2021). Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature and adoption cost. </span><em><span style="font-weight: 400;">Renewable Agriculture and Food Systems</span></em><span style="font-weight: 400;">. https://doi.org/https://doi.org/10.1017/S1742170520000411</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Thompson, N. M., Armstrong, S. D., Roth, R. T., Ruffatti, M. D., &amp; Reeling, C. J. (2020). Short-Run Net Returns to a Cereal Rye Cover Crop Mix in a Midwest Corn-Soybean Rotation. </span><em><span style="font-weight: 400;">Agronomy Journal</span></em><span style="font-weight: 400;">, </span><em><span style="font-weight: 400;">112</span></em><span style="font-weight: 400;">, 1068&ndash;1083.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Lacey, C., Nevins, C. J., Camberato, J. J., Kladivko, E. J., Sadeghpour, A., &amp; Armstrong, S. D. (2020). Carbon and nitrogen release from cover crop residues and implications for cropping systems management. </span><em><span style="font-weight: 400;">Journal of Soil and Water Conservation</span></em><span style="font-weight: 400;">, </span><em><span style="font-weight: 400;">75</span></em><span style="font-weight: 400;">(4), 505&ndash;514.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Hodgskiss, C. L., Young, B. G., Armstrong, S. D., &amp; Johnson, W. G. (2021). Evaluating cereal rye and crimson clover for weed suppression within buffer areas in dicamba-resistant soybean. </span><em><span style="font-weight: 400;">Weed Technology</span></em><span style="font-weight: 400;">, 1&ndash;29.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">DeSimini, S. A., Gibson, K. D., Armstrong, S. D., Zimmer, M., Maia, Lucas O. R., &amp; Johnson, W. G. (2020). Effect of cereal rye and canola on winter and summer annual weed emergence in corn. </span><em><span style="font-weight: 400;">Weed Technology</span></em><span style="font-weight: 400;">, </span><em><span style="font-weight: 400;">34</span></em><span style="font-weight: 400;">(6), 787&ndash;793. https://doi.org/10.1017/wet.2020.51</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Thompson, N. M., Reeling, C. J., Michelle Fleckenstein, Prokopy, L. S., &amp; Armstrong, S.D. (2020). Examining Intensity of Conservation Practice Adoption: Evidence from Cover Crop Use on U.S. Midwest Farms. </span><em><span style="font-weight: 400;">Food Policy</span></em><span style="font-weight: 400;">. (Accepted)</span></li><br /> </ul><br /> <p>&nbsp;Wisconsin</p><br /> <ul><br /> <li><span style="font-weight: 400;">West, J.R., M.D. Ruark, and K.B. Shelley. 2020. Sustainable intensification of corn silage cropping systems with winter rye. Agron. Sustain. Devel. 40:11.</span></li><br /> <li><span style="font-weight: 400;">West, J.R., A.M. Cates, M.D. Ruark, L. Deiss, T. Whitman, and Y. Rui. 2020. Winter rye does not increase necromass contributions to soil organic carbon in continuous corn silage in North Central US. Soil Biol. Biochem. 148:107899</span></li><br /> </ul><br /> <p>&nbsp;Nebraska</p><br /> <ul><br /> <li><span style="font-weight: 400;">Blanco-Canqui, H., and S, Ruis. 2020. Cover crops and soil physical properties: A review. Soil Sci. Soc. Am. J. 1527-1576.&nbsp;</span></li><br /> <li><span style="font-weight: 400;">Blanco-Canqui, H., M. Drewnoski, D. Redfearn. J. Parsons, G. Lesoing, and W. Tyler. 2020. Does cover crop grazing damage soils and reduce crop yields?. Agrosystems, Geosciences &amp; Environment 3: e20102.</span></li><br /> <li><span style="font-weight: 400;">Blanco-Canqui, H., S, Ruis, C. Proctor, C. Creech, M. Drewnoski, and D. Redfearn. 2020. Harvesting cover crops for biofuel and livestock production: Another ecosystem service? A review. Agron J. 112:2373-2400.</span></li><br /> <li><span style="font-weight: 400;">Chatterjee, N., Archontoulis</span> <span style="font-weight: 400;">S., Bastidas</span> <span style="font-weight: 400;">A., Proctor</span> <span style="font-weight: 400;">C., Elmore</span> <span style="font-weight: 400;">R,&nbsp;and Basche</span><span style="font-weight: 400;">, </span><span style="font-weight: 400;">A. </span><span style="font-weight: 400;">Simulating alternative corn management for earlier cover crop introduction in corn-soybean rotation. Agronomy Journal. https://doi.org/10.1002/agj2.20377</span></li><br /> <li><span style="font-weight: 400;">Koehler-Cole, K., R.W. Elmore, H. Blanco-Canqui, C.A. Francis, C.A. Shapiro, C.A. Proctor, D.M. Heeren, S. Ruis, S. Irmak, and R.B. Ferguson. 2020. Cover crop productivity and subsequent soybean yield in the western Corn Belt. Agron. J. 112:2649-2663.</span></li><br /> <li><span style="font-weight: 400;">Koehler-Cole, K., S. Everhart, Yan Gu, C. Proctor, M. Marroquin Guzman, D. Redfearn, and R. Elmore. 2020. Is allelopathy from winter cover crops affecting row crops? Agricultural and Environmental Letters. doi:1031002/ael2.20015.</span></li><br /> <li><span style="font-weight: 400;">Koehler-Cole, K., C.A. Proctor, R.W. Elmore, D.A. Wedin. Spring-planted cover crops for weed control in organic soybean. Renewable Agriculture and Food Systems. In Press.</span></li><br /> <li><span style="font-weight: 400;">&nbsp;</span></li><br /> <li><span style="font-weight: 400;">Koehler-Cole, K., and R.W. Elmore. 2020. Seeding Rates and Productivity of Broadcast Interseeded Cover Crops. Agronomy 10:1723. doi: 10.3390/agronomy10111723.&nbsp;</span></li><br /> <li><span style="font-weight: 400;">Nichols, V., Martinez-Feria, R., Weisberger, D., Carlson, S., Basso, B., Basche, A. 2020. Cover crops and weed suppression in the US Midwest: a meta-analysis and modeling study. Agricultural and Environmental Letters.5:e20022. https://doi.org/10.1002/ael2.20022</span></li><br /> <li><span style="font-weight: 400;">Ruis, S.J., H. Blanco-Canqui, K. Koehler-Cole, P. Jasa, G. Slater, R.W. Elmore, and R.B. Ferguson 2020. Winter cover crop root biomass yield in corn and soybean systems. Agrosystems, Geosciences &amp; Environment 3: e20101.</span></li><br /> <li><span style="font-weight: 400;">Ruis, S.J., H. Blanco-Canqui, K. R.W. Elmore, C. Proctor, K. Koehler-Cole, C.A. Shapiro, C.A. Francis, and R.B. Ferguson. 2020. Impacts of cover crop planting dates on soils after four years. Agron. J. 112:1649-1665.</span></li><br /> </ul><br /> <p>&nbsp;North Dakota</p><br /> <ul><br /> <li><span style="font-weight: 400;">Delavarpour, N., S. Eshkabilov, T. Bon, J. Nowatzki, and S. Bajwa. 2020.</span> <span style="font-weight: 400;">The Tractor-Cart System Controller with Fuzzy Logic Rules</span><span style="font-weight: 400;">. </span><span style="font-weight: 400;">Appl. Sci. 2020, 10, 5223; doi:10.3390/app10155223</span></li><br /> <li><span style="font-weight: 400;">Teuber, O., D. Samarappuli, and M.T. Berti. 2020. Nitrogen and sulfur fertilization in kale and swede for grazing. Agronomy 10(5), 619; doi:10.3390/agronomy10050619</span></li><br /> <li><span style="font-weight: 400;">Acharya, K., Yan, G. P., and Plaisance, A. 2020. </span><span style="font-weight: 400;">Effects of cover crops on population reduction of soybean cyst nematode, </span><em><span style="font-weight: 400;">Heterodera glycines</span></em><span style="font-weight: 400;">. </span><span style="font-weight: 400;">Plant Disease 104. https://doi.org/10.1094/PDIS-08-20-1778-RE</span></li><br /> <li><span style="font-weight: 400;">Podder, S., D. Samarappuli, James V. Anderson, and M.T. Berti*. 2020. Phenotyping a diverse collection of forage sorghum genotypes for chilling tolerance. Agronomy, 10:1074</span> <span style="font-weight: 400;">doi:10.3390/agronomy10081074</span></li><br /> <li><span style="font-weight: 400;">Mohammed, Y.A., S. Patel, H. Matthees, A.W. Lenssen, B.L. Johnson, M.S. Wells, F. Forcella, M.T. Berti, R.W. Gesch. 2020 Soil nitrogen in response to interseeded cover crops in maize&ndash;soybean Production Systems. Agronomy 10, 1439; doi:10.3390/agronomy10091439</span></li><br /> <li><span style="font-weight: 400;">Forcella, F., S. Patel, A.W. Lenssen, C. Hoening, J. Eckberg, M.S. Wells, R.W. Gesch, and M.T. Berti. 2020. Pollinator visitation of flowering winter oilseeds (field pennycress and winter camelina). J. Applied Entomology 00:1-9 doi: 10.1111/jen.12854</span></li><br /> <li><span style="font-weight: 400;">Wittenberg, A., J.V. Anderson, M.T. Berti. 2020. Crop growth and productivity of winter camelina in response to sowing date. Ind. Crops Prod. 158:113036 doi.org/10.1016/j.indcrop.2020.113036</span></li><br /> <li><span style="font-weight: 400;">Patel, S., A.W. Lenssen, K.J. Moore, Y.A. Mohammed, R.W. Gesch, M.S. Wells, B.L. Johnson, M.T. Berti, and H.L. Matthees. 2021. Interseeded pennycress and camelina yield and their influence on row crops. Agronomy J. </span><em><span style="font-weight: 400;">Accepted&nbsp;</span></em></li><br /> <li><span style="font-weight: 400;">Cecchin, A., Pourhashem, G., R.W. Gesch, A.W. Lenssen, S. Patel, and M.T. Berti. 2021. Environmental trade-offs of relay-cropping winter cover crops within maize and soybean. Agric. Systems 189:103062</span></li><br /> <li><span style="font-weight: 400;">Cecchin, A., Pourhashem, G., R.W. Gesch, A.W. Lenssen, S. Patel, and M.T. Berti. 2021. The environmental impact of ecological intensification of a cropping system in the U.S. Upper Midwest. Sustainability 13: 1696. https://doi.org/10.3390/su13041696</span></li><br /> <li><span style="font-weight: 400;">Sigdel, S., A. Chaterjee, M.T. Berti, C. Gasch, and A. Wick. 2021.&nbsp; Interseeding cover crops in sugarbeet. Field Crops Res. 263: 1080709, doi.org/10.1016/j.fcr.2021.108079</span></li><br /> <li><span style="font-weight: 400;">Johnson, K., H. Kandel, D.P. Samarappuli, and M.T. Berti. 2021.</span> <span style="font-weight: 400;">Interseeding camelina and rye in soybean with varying maturity provides soil cover without affecting soybean yield. Agronomy</span> <span style="font-weight: 400;">11, 353. https://doi.org/10.3390/agronomy11020353</span></li><br /> <li><span style="font-weight: 400;">Lukaschewsky, J., D.P. Samarappuli, and M.T. Berti. 2021.</span> <span style="font-weight: 400;">Intercropping alfalfa into silage maize can be more profitable than maize silage followed by spring-seeded alfalfa. Agronomy </span><em><span style="font-weight: 400;">Accepted</span></em></li><br /> <li><span style="font-weight: 400;">Schmitt, M. M.T. Berti, D. Samarappuli, and J. Ransom. 2021. Factors affecting the establishment and growth of cover crops intersown into maize (</span><em><span style="font-weight: 400;">Zea mays</span></em><span style="font-weight: 400;"> L.). Agronomy </span><em><span style="font-weight: 400;">Accepted</span></em></li><br /> <li><span style="font-weight: 400;">Sciarresi, C., C. Proctor, E. Haramoto, L. Lindsey, G. Carmona, R. Elmore, S. Everhart, W. Looker, M. Marroquin-Guzman, J. McMechan, J. Wehrbein, R. Werle, M. Salmeron. 2020. Evaluating short-season soybean management adaptions for cover crop rotations with a crop simulation model. Field Crop Research. 250:107734. doi: 10.1016/j.fcr.2020.107734.</span></li><br /> </ul><br /> <p>&nbsp;Minnesota</p><br /> <ul><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Ginakes, P.., Grossman, J., Baker, J., &amp; Sooka-sanguan, T. (2020). Living mulch management spatially localizes nutrient cycling in organic corn production. MDPI Agriculture, 10(6), 243.&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Ginakes, P., Grossman, J., Baker, J., &amp; Sooksa-nguan, T. (2020). Tillage intensity influences nitrogen cycling in organic kura clover living mulch. Nutrient Cycling in Agroecosystems, 116(1), 71-82.&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Liu, R, MS Wells, and A Garcia y Garcia. 2019. Cover crop potential of winter oilseed crops in the Northern U.S. Corn Belt. Arch. Agron. Soil Sci., 65(13): 1845-1859.</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">doi: 10.1080/03650340.2019.1578960&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Moore, S.A., Wells, M.S., Gesch, R.W., Becker, R.L., Rosen, C.J., &amp; Wilson, M.L. (2020). Pennycress as a Cash Cover-Crop: Improving the Sustainability of Sweet Corn Production Systems. Agronomy, 10(5), 614. </span><a href="https://doi.org/10.3390/agronomy10050614"><span style="font-weight: 400;">https://doi.org/10.3390/agronomy10050614</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Yesuf Assen Mohammed, Swetabh Patel, Heather L. Matthees, Andrew W. Lenssen, Burton L. Johnson, M. Scott Wells, Frank Forcella, Marisol T. Berti and Russ W. Gesch. 2020. Soil nitrogen in response to interseeded cover crops in maize&ndash;soybean production systems. Agronomy 2020, 10(9), 1439; </span><a href="https://doi.org/10.3390/agronomy10091439"><span style="font-weight: 400;">https://doi.org/10.3390/agronomy10091439</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Yesuf Assen Mohammed, Heather L. Matthees, Russ W. Gesch, Swetabh Patel, Frank Forcella, Kyle Aasand, Nicholas Steffl, Burton L. Johnson,&nbsp; M. Scott Wells and Andrew W. Lenssen. 2020. Establishing winter annual cover crops by interseeding into Maize and Soybean. Agronomy Journal. https://doi.org/10.1002/agj2.20062</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Perrone, S., Grossman, J., Liebman, A., Sooksa-ngua, T., &amp; Gutknecht, J. (2020). Nitrogen fixation and productivity of winter annual legume cover crops in Upper Midwest organic cropping systems. Nutrient Cycling in Agroecosystems, 117, 61&ndash;76.&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Rusch, HL, JA Coulter, JM Grossman, GA Johnson, PM Porter, and A Garcia y Garcia. 2020. Towards sustainable maize production in the U.S. upper Midwest with interseeded cover crops. PLOS ONE 15(4): e0231032. doi: 10.1371/journal.pone.0231032</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">West, J. R., Cates, A. M., Ruark, M. D., Deiss, L., Whitman, T., &amp; Rui, Y. (2020). Winter rye does not increase microbial necromass contributions to soil organic carbon in continuous corn silage in North Central US. </span><em><span style="font-weight: 400;">SOIL BIOLOGY &amp; BIOCHEMISTRY, 148</span></em><span style="font-weight: 400;">. </span><a href="http://dx.doi.org/10.1016/j.soilbio.2020.107899"><span style="font-weight: 400;">doi: 10.1016/j.soilbio.2020.107899</span></a></li><br /> </ul><br /> <p><span style="font-weight: 400;">Kansas</span></p><br /> <ul><br /> <li><span style="font-weight: 400;">Fontes GP, Tomlinson PJ, Roozeboom KL, Warren J, Diaz DR. 2020. Nitrogen fertilization offsets the N2O mitigating effects of cover-crops and double-crop soybean in a wheat-sorghum system. Agron J. 112 (2) 772-785. </span><a href="https://doi.org/10.1002/agj2.20095"><span style="font-weight: 400;">https://doi.org/10.1002/agj2.20095</span></a></li><br /> <li><span style="font-weight: 400;">Carr, P., J. Bell, D. Boss, P. DeLaune, J. Eberly, L. Edwards, H. Fryer, C. Graham, J. Holman, M. Islam, M. Liebig, P. Miller, A. Obour, and Q. Xue. Annual forage impacts on dryland wheat farming in the Great Plains. Agronomy Journal. 113:1, 1-25. https://doi.org/10.1002/agj2.20513</span></li><br /> <li><span style="font-weight: 400;">Holman, JD, A. Obour, and Y. Assefa. 2020. Cover-crop water use and productivity in the High Plains wheat-fallow crop rotation. Crop Science. 1-12. https://doi.org/10.1002/csc2.20365</span></li><br /> <li><span style="font-weight: 400;">Holman, JD, Y. Assefa, M. Stamm, and A. Obour. 2020. Canola yield, forage accumulation, and nutritive value in dual-purpose and companion cropping. Holman, Yared, Stamm, and Augustine. Crop Science. 63:1, 814-824. https://doi.org/10.1002/csc2.20291</span></li><br /> <li><span style="font-weight: 400;">Holman, JD, Schlegel A, Obour AK, and Y. Assefa. 2020. Dryland cropping system impact on forage accumulation, nutritive value, and rainfall use efficiency. Crop Science. 60:6, 3395-3409. https://doi.org/10.1002/csc2.20251</span></li><br /> <li><span style="font-weight: 400;">Obour AK, JD Holman, and AJ Schlegel. 2020. Spring triticale forage responses to seeding rate and nitrogen application. Agrosyst Geosci Environ. 2020;3:e20053. https://doi.org/10.1002/agg2.20053</span></li><br /> <li><span style="font-weight: 400;">Kumar V, A. Obour, P. Jha, R. Liu, M.R. Manuchehri, J.A. Dille, J. Holman, and P.W. Stahlman. 2020. Integrating cover crops for weed management in the semiarid U.S. Great Plains: Opportunities and challenges. Weed Sci. doi:10.1017/wsc.2020.29</span></li><br /> </ul>

Impact Statements

  1. Seven members of the NCCC-211 team (Basche, Ruark, Armstrong, Tomlinson, Presley, Kladivko, Baas) are active in the research, teaching and education components of the Precision Sustainable Agriculture Coordinated Agriculture Project supported by USDA-NIFA. In 2020, the team developed protocols and initiated experiment station trials in multiple states (NE, IN, IL, WI) to understand the role of different cover crop species (legumes, grasses and mixtures) on the economically optimal nitrogen rate in a subsequent corn crop, as well as the impact of planting corn into standing cereal rye cover crops on pest populations. Additionally, team members participated in retreats and recurring regular meetings in developing a new multi-institution cover crop management course, to be offered for the first time in fall 2021.
Back to top

Date of Annual Report: 04/13/2022

Report Information

Annual Meeting Dates: 03/07/2022 - 03/07/2022
Period the Report Covers: 01/01/2021 - 12/31/2022

Participants

Anna Cates, Eileen Kladivko, Shalamar Armstrong, Andrea Bacshe, Peter Tomlinson, Mark Licht, Dean Baas, Vance Owens (NIFA), Kendall Lamkey

Brief Summary of Minutes

Accomplishments

<p><span style="font-weight: 400;">The NCCC-211 team is an integral part of the Midwest Cover Crop Council (MCCC); as such our efforts are often one in the same. NCCC-211 has active representation from eight states and we continue to look to gain representation from the 4 remaining North Central states; at the time of this submission representatives from OH and MO have been identified. The MCCC has representation from 12 states and 2 Canadian provinces with agri-business, agency, farmer, and non-profit representation. NCCC-211 and MCCC are focused on developing tools and outreach materials to reduce cover crop adoption barriers and increase crop production resiliency.</span></p><br /> <p><strong>Short-term outcomes:</strong><span style="font-weight: 400;"> None to report at this time.</span></p><br /> <p><strong>Outputs:</strong></p><br /> <p><span style="font-weight: 400;">Cover Crop Recipes</span><span style="font-weight: 400;"> continue to be developed to provide a starting point for farmers who are new to growing cover crops. In total 30 state specific Recipes (4 new Recipes in 2021) have been developed reaching &gt;8,400 total pageviews.</span></p><br /> <p><span style="font-weight: 400;">Cover Crop Field Guide</span><span style="font-weight: 400;"> 3rd edition was released with 3,785 copies distributed in 2021. The 2nd edition had 3,34 4 copies distributed in 2021 before the 3rd edition was released. </span><span style="font-weight: 400;">Updates to the guide include recommendations for cover crop termination in unfavorably wet springs and planting green into cover crops. The cover crop species section of the guide has also been expanded to incorporate white clover, forage brassicas, balansa clover and several cover crops commonly used in a mix.</span></p><br /> <p><span style="font-weight: 400;">Social Media Intern</span> <span style="font-weight: 400;">was hired to help increase our social media presence. From 1 November 2021 to 1 March 2022, Facebook reach increased by 1400%, visits increased by 75%, and pages likes increased by 73%. For the same period, Twitter engagement was 1.9% up from 1.6% (average Twitter engagement is 1-2%).</span></p><br /> <p><span style="font-weight: 400;">CCA Training Modules</span><span style="font-weight: 400;">, i</span><span style="font-weight: 400;">n partnership with SARE, 11 modules designed for crop advisors to learn more about cover crop adoption. The modules were presented in 6 webinars that had a total of 334 attendees at the end of 2021 and beginning of 2022. These modules are shared on the MCCC website for download and use.&nbsp;</span></p><br /> <p><span style="font-weight: 400;">USDA-NIFA SAS CAP Precision Sustainable Agriculture Coordinated Agriculture Project</span><span style="font-weight: 400;"> continued with representatives from 6 states (IA, IN, KS, MI, NE, WI). This project has coordinated research protocols for on-farm experiments (3 per state) in IA, IN, KS, NE, and WI to investigate soil moisture and cover crop decomposition. Additionally, experiment station trials include cover crop plus optimal N rates and termination timing influence on pest/disease dynamics, and cover crop decomposition. A highlight of 2021 was the development of an undergraduate cover crop course that was offered in the fall of 2021 simultaneously at 7 institutions. Michigan State University and University of Nebraska - Lincoln representatives promoted MCCC/NCCC-211 materials to be included (i.e. all students received a Cover Crop Field Guide, management course module showcased the Selector Tool). This course had enrollment of more than 100 students with students interacting with students across the 7 institutions.</span></p><br /> <p><strong>Activities:</strong></p><br /> <p><span style="font-weight: 400;">Number of graduate students and postdocs involved in cover crop work: 67</span></p><br /> <p><span style="font-weight: 400;">Number of presentations: 205</span></p><br /> <p><span style="font-weight: 400;">Number of publications: 49</span></p><br /> <p><strong>Milestones:</strong></p><br /> <p><span style="font-weight: 400;">Through strategic planning the MCCC executive committee refined 3 key focus areas: education, network growth, and collective impact. </span><strong>Educational</strong><span style="font-weight: 400;"> milestones have been achieved through the release of the 3rd edition of the Cover Crop Field Guide. A major </span><strong>network growth </strong><span style="font-weight: 400;">milestone was the hiring of a social media intern to help broaden the reach and distribution of outreach materials. </span><strong>Collective impact</strong><span style="font-weight: 400;"> is being accomplished through the SAS CAP project and quarterly stakeholder listening sessions.</span></p>

Publications

<ol><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Acharya, J., T. Kaspar, and A.E. Robertson. 2021. Effect of 6-Methoxy-2-benzoxazolinone (MBOA) on Pythium species and corn seedling growth and disease. Plant Dis.</span><a href="https://doi.org/10.1094/PDIS-04-20-0824-SC"> <span style="font-weight: 400;">doi.org/10.1094/PDIS-04-20-0824-SC</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Anderson, J.V., M. Neubauer, D.P. Horvath, W.S. Chao, and M.T. Berti. 2022. Analysis of Camelina sativa transcriptomes identified specific transcription factors and processes associated with freezing tolerance in a winter biotype. Ind. Crops Prod. 177:114414</span><a href="https://doi.org/10.1016/j.indcrop.2021.114414"> <span style="font-weight: 400;">doi.org/10.1016/j.indcrop.2021.114414</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Andrea, C., G. Pourhashem, R.W. Gesch, A.W. Lenssen, Y.A. Mohammed, S. Patel, M.T. Berti. 2021. Environmental trade-offs of relay-cropping winter cover crops with soybean in the maize-soybean rotation. Agricultural Systems 189: 103062.</span><a href="https://doi.org/10.1016/j.agsy.2021.103062"> <span style="font-weight: 400;">doi.org/10.1016/j.agsy.2021.103062</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Baker J.M., K.A. Albrecht, G.E. Feyereisen, and J.D. Gamble. 2021. A perennial living mulch substantially increases infiltration in row crop systems. J. Soil Water Conserv. 77(1).</span><a href="https://doi.org/10.2489/jswc.2022.00080"> <span style="font-weight: 400;">doi.org/10.2489/jswc.2022.00080</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Blanco‐Canqui, H., M.E. Drewnoski, and D.G. Rice. 2021. Does harvesting cover crops eliminate the benefits of cover crops? Insights after three years. Soil Sci. Soc. of Am. J. 85:146-157.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Berti, M.T., A. Cecchin, D.P. Samarappuli, S. Patel, A.W. Lenssen, K.J. Moore, S.S. Wells, and M.J. Kazula. 2021. Alfalfa established successfully in intercropping with corn in the US Midwest. Agronomy. 11:1676.</span><a href="https://doi.org/10.3390/agronomy11081676"> <span style="font-weight: 400;">doi.org/10.3390/agronomy11081676</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Brooker, A., K. Renner, R.F. Price, and B. Basso. 2021. Evaluating high-resolution optical and thermal reflectance of maize interseeded with cover crops across spatial scales using remotely sensed imagery. Agron. J. 113:2884-2899.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Candelaria, N., J. Grossman, M. Rogers, and A. Fernandez. 2021. Exploring multifunctionality of summer cover crops for organic vegetable farms in the upper Midwest. Renew. Ag. and Food Sys.&nbsp;&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Carver, R.E., N.O. Nelson, K.L. Roozeboom, G.J. Kluitenberg, P.J. Tomlinson, Q. Kang, D.S. Abel. 2022. Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. J. Environ. Mgmt. 301.</span><a href="https://doi.org/10.1016/j.jenvman.2021.113818"> <span style="font-weight: 400;">doi.org/10.1016/j.jenvman.2021.113818</span></a><span style="font-weight: 400;">.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Davis, C.J., D.R. Presley, C.L. Rivard, J.J. Griffin, and P.J. Tomlinson. 2022. Conservation systems influence on soil properties in pumpkin production. Soil Sci. Soc. Am. J. 86:435&ndash;449.</span><a href="https://doi.org/10.1002/saj2.20365"> <span style="font-weight: 400;">doi.org/10.1002/saj2.20365</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Franco, J.G., M.T. Berti, J.H. Grabber, J.R. Hendrickson, C.C. Nieman, P. Pinto, D. van Tassel, and V.D. Picasso. 2021. Ecological intensification of food production by integrating forages. Agronomy. 11:2580.</span><a href="https://doi.org/10.3390/agronomy11122580"> <span style="font-weight: 400;">doi.org/10.3390/agronomy11122580</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Francis, H.R., T.F. Ma, and M.D. Ruark. 2021. Toward a standardized statistical methodology comparing optimum nitrogen rates among management practices: A bootstrapping approach. Ag. Environ. Letters. 6:e20045.</span><a href="https://doi.org/10.1002/ael2.20045"> <span style="font-weight: 400;">doi:10.1002/ael2.20045.</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Forcella F., S. Patel, A.W. Lenssen, C. Hoerning, M.S. Wells, R.W. Gesch, M.T. Berti. 2021. Weather and landscape influences on pollinator visitation of flowering winter oilseeds (field pennycress and winter camelina). Journal of Applied Entomology. 145:286&ndash;294</span><a href="http://dx.doi.org/10.1111/jen.12854"> <span style="font-weight: 400;">doi.org/10.1111/jen.12854</span></a><span style="font-weight: 400;">.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Gesch, R.W, M.S. Wells, and A. Hard. 2021. Desiccation of corn allows earlier direct seeding of winter camelina in the Northern Corn Belt. Crop Sci.</span><a href="https://doi.org/10.1002/csc2.20549"> <span style="font-weight: 400;">doi:10.1002/csc2.20549</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Ginakes, P. and J. Grossman. 2021. Extending cover crop benefits with zone-till management in northern organic summer squash production. Agronomy.&nbsp;&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Gutknecht J., A. Journey, H. Blair, H. Peterson, and A. Cates. 2022. Reduced tillage and diverse cover crops for soil Management practices to promote soil health and climate adaptation: grappling with varied success and farmer versus researcher perspectives. J. Environ. Qual.&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Hodgskiss, C.L., B.G. Young, S.D. Armstrong, and W.G. Johnson. 2021. Evaluating cereal rye and crimson clover for weed suppression within buffer areas in dicamba-resistant soybean. Weed Tech. 1&ndash;29.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Howard, G., W. Zhang, A. Valcu-Lisman, and P.W. Gassman. 2021. Evaluating the efficiency-participation tradeoff in agricultural conservation programs: The effect of reverse auctions, spatial targeting, and higher offered payments. Working paper 21-WP 622. Center for Ag. Rural Devel., Iowa State University, Ames, IA.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Carmona, I.G., L.M. Delserone, J.N. Duarte Campos, T.F. Almeida, D.V.B. Oz&oacute;rio, J.D.B. Cardona, R. Wright, and A.J. McMechan. 2021. Does cover crop management affect arthropods in the subsequent corn and soybean crops in the United States? A systematic review. Annals Ent. Soc. Am. 114:151-162.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Kandel, H., D.P. Samarappuli, K. Johnson, and M.T. Berti. 2021. Soybean relative maturity, not row spacing affected interseeded cover crops biomass. Agriculture. 11:441</span><a href="https://doi.org/10.3390/agriculture11050441"> <span style="font-weight: 400;">doi.org/10.3390/agriculture11050441</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Koehler-Cole, K., C.A. Proctor, R.W. Elmore, and D.A. Wedin. 2021. Spring-planted cover crops for weed control in soybean. Renew. Ag. Food Sys. 1-8.</span><a href="https://doi.org/10.1017/S1742170521000107"> <span style="font-weight: 400;">doi.org/10.1017/S1742170521000107 </span></a><span style="font-weight: 400;">&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Kurtz, S., J. Acharya, T. Kaspar, and A.E. Robertson. 2021. Influence of spatial planting arrangement of winter rye cover crop on corn seedling disease and corn productivity. Plant Dis. 105:4014-4024</span><a href="https://doi.org/10.1094/PDIS-04-21-0764-RE"> <span style="font-weight: 400;">doi.org/10.1094/PDIS-04-21-0764-RE</span></a><span style="font-weight: 400;">.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Kurtz, S., J. Acharya, T. Moorman, T. Kaspar, A. Lenssen, and A.E. Robertson. 2021. Seedling disease of corn caused by Pythium increases with proximity of rye. Plant Dis.</span><a href="https://doi.org/10.1094/PDIS-06-20-1389-SC"> <span style="font-weight: 400;">doi.org/10.1094/PDIS-06-20-1389-SC</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Liebman, M., A. Basche, T.X. Huong, D.A. Weisberger. 2021. How can cover crops contribute to weed management? A modelling approach illustrated with rye (Secale cereale) and Amaranthus tuberculatus. Weed Research. </span><a href="https://doi.org/10.1111/wre.12508"><span style="font-weight: 400;">doi.org/10.1111/wre.12508</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Lowry, C., G.P. Robertson, and D.C. Brainard. 2021. Strip-tillage decreases soil nitrogen availability and increases the potential for N losses in a cover cropped organic system. Ag. Eco. Environ. 319:107524.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Logsdon, S.D., C.A. Cambardella, and P.L. O'Brien. 2021. Multispecies cover crops in organic agricultural systems in the upper U.S. Midwest. Agrosyst. Geosci. Environ. 4:e20221.</span><a href="https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1002%2Fagg2.20221&amp;data=04%7C01%7C%7C536dc3dc9c2b4fcf721508d9fba85eca%7Ced5b36e701ee4ebc867ee03cfa0d4697%7C0%7C0%7C637817522825988930%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&amp;sdata=LDSoY2tCimAfPpeRe%2FlGglF7sHbjeQFsAX8LdxREoco%3D&amp;reserved=0"> <span style="font-weight: 400;">doi.org/10.1002/agg2.20221</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Maher, R.M., A. Rangarajan, B.A. Caldwell, Z.D. Hayden, D.C. Brainard. 2021. Legume species not spatial arrangement influence cover crop mixture effects in strip-tilled organic cabbage. Agron. J. 113:2710-2731.&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Mohammed, Y.A., R.W. Gesch, H.L. Matthees, and S.S. Wells. 2022. Maturity selection but not sowing date enhances soybean productivity and land use in a winter camelina-soybean relay system. Food Energy Sec. 11: e346.</span><a href="https://doi.org/10.1002/fes3.346"> <span style="font-weight: 400;">doi.org/10.1002/fes3.346</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Nevins, C., C.L. Lacey, and S.D. Armstrong. 2021. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems. Eur. J. Agron.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Nguyen, L.T. and A.N. Kravchenko. 2021. Effects of cover crops on soil CO2 and N2O emissions across topographically diverse agricultural landscapes in corn-soybean-wheat organic transition. Eur. J. Agron. 122:126189.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Obour, AK, L.M. Simon, J.D. Holman, P.M. Carr, M. Schipanski, S. Fonte, R. Ghimire, T. Nleya, and H. Blanco-Canqui. 2021. Cover crops to improve soil health in the North American Great Plains. Agron. J. 113:4590&ndash;4604. </span><a href="https://doi.org/10.1002/agj2.20855"><span style="font-weight: 400;">doi.org/10.1002/agj2.20855</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">O'Neill, B., C.D. Sprunger, and G.P. Robertson. 2021. Do soil health tests match farmer experience? Assessing biological, physical, and chemical indicators in the upper Midwestern United States. Soil Sci. Soc. Am. J. 85:903-918.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Osterholtz, W.R., M.D. Ruark, M.J. Renz, and J.H Grabber. 2021. Interseeding alfalfa into corn silage increases corn N fertilizer demand and increases system yield. Agron. Sus. Devel. 41:58 doi:10.1007/s13593-021-00711-1</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Osterholtz, W., M.D. Ruark, M. Renz, and J.H. Grabber. 2021. Benefits of alfalfa interseeding include reduced residual soil nitrate following corn production. Ag. Environ. Let.. 6:e20053. doi:10.1002/ael2.20053.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Patel, S., C.A. Bartel, A.W. Lenssen, K.J. Moore, and M.T. Berti. 2021. Stem density, productivity, and weed community dynamics in corn-alfalfa intercropping. Agronomy. 11:1696 doi:10.3390/agronomy11091696</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Patel, S., A.W. Lenssen, K.J. Moore, Y.A. Mohammed, R.W. Gesch, M.S. Wells, B.L. Johnson, M.T. Berti, and H.L. Matthees. 2021. Interseeded pennycress and camelina yield and influence on row crops.&nbsp; Agron. J. 113:2629-2647 doi:10.1002/agj2.20655.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Perkus, E., J. Grossman, A. Pfeiffer, M. Rogers, and C. Rosen. 2021. Exploring overwintered cover crops as a soil management tool in upper-Midwest high tunnels. Hort. Sci.&nbsp; </span><span style="font-weight: 400;">doi.org/10.21273/HORTSCI15987-21</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Ruis, S.J., J.A. Guretzky, M. Howell-Smith, H. Blanco-Canqui, D. Redfearn, K. Koehler-Cole, R.W. Elmore, and K.L. Bash. 2021. Developing research and extension skills of undergraduate students while fostering interest in integrated agronomic systems. N. Am. Col. Teach. Ag. J. 65.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Sadeghpour, A., O. Adeymi, D. Hunter, Y. Lua, and S.D. Armstrong. 2021. Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature and adoption cost. Renew. Ag. Food Sys.</span><a href="https://doi.org/https:/doi.org/10.1017/S1742170520000411"> <span style="font-weight: 400;">doi.org/10.1017/S1742170520000411</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Samuelson, M.B., E.V. Reid, R. Drijber, E. Jeske, H. Blanco-Canqui, M. Mamo, I. Kadoma, and S.E. Wortman. 2021. Effects of compost, cover crops, and local conditions on degradation of two agricultural mulches in soil. Ren. Ag. Food Sys. 1-14.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Sawadgo, W. and A. Plastina. 2021. Do Cost-Share Programs Increase Cover Crop Use? Empirical Evidence from Iowa.&nbsp; Renew. Ag. Food Sys. 1-9. doi:10.1017/S1742170521000132.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Sawadgo, W., W. Zhang, and A. Plastina. 2021. What drives landowners&rsquo; conservation decisions? Evidence from Iowa. J. Soil Water Conser. 76:211-221.</span><a href="https://doi.org/10.2489/jswc.2021.00115"> <span style="font-weight: 400;">doi.org/10.2489/jswc.2021.00115</span></a><span style="font-weight: 400;">.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Schlautman, B., C. Bartel, L. Diaz-Garcia, S. Fei, S. Flynn, E. Haramoto, K. Moore, and D. Raman. 2021. Perennial groundcovers: an emerging technology for soil conservation and the sustainable intensification of agriculture. Emerg. Topics Life Sci. 5:337-347. doi:10.1042/ETLS20200318.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Schramski, J.A., C.L. Sprague, and K.A. Renner. 2021. Effects of fall-planted cereal cover-crop termination time on glyphosate-resistant horseweed (Conyza canadensis) suppression. Weed Tech. 35:223-233.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Schramski, J.A., C.L. Sprague, and K.A. Renner. Integrating fall-planted cereal cover crops and preplant herbicides for glyphosate-resistant horseweed (Conyza canadensis) management in soybean. Weed Tech. 35:234-241.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Simon, L.M., A.K. Obour, J.D. Holman, S.K. Johnson, and K.L. Roozeboom. 2021. Forage productivity and soil properties in dual-purpose cover crop systems. Agron. J. 113:5569&ndash;5583. </span><a href="https://doi.org/10.1002/agj2.20877"><span style="font-weight: 400;">doi.org/10.1002/agj2.20877</span></a></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Wauters, V., J. Grossman, A. Pfeiffer, and R. Cala. 2021. Ecosystem services and cash crop tradeoffs of summer cover crops in Northern region organic vegetable rotations. Frontiers Sus. Food Sys.&nbsp;&nbsp;</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Wayment, J. 2021. Cover crops and living mulches and their role in minimizing unintended nitrogen consequences on the environment. University of Minnesota Libraries. M.S. Thesis.</span></li><br /> <li style="font-weight: 400;"><span style="font-weight: 400;">Weyers, S.L., R.W. Gesch, F. Forcella, C.A. Eberle, M.D. Thom, H.L. Matthees, M. Ott, G.W. Feyereisen, and J.S. Strock. 2021. Surface Runoff and Nutrient Dynamics in Cover Crop-Soybean Systems in the Upper Midwest. J. of Environ. Qual. 50:158-171. doi:10.1002/jeq2.20135</span></li><br /> </ol>

Impact Statements

  1. The NCCC-211 and MCCC continues to be integral in multi-state research projects such as the AFRI-Sustainable Agriculture Systems (SAS) program funded project “Enhancing the Sustainability of US Cropping Systems through Cover Crops and an Innovative Information and Technology Network.”
Back to top

Date of Annual Report: 06/13/2023

Report Information

Annual Meeting Dates: 01/24/2023 - 01/24/2023
Period the Report Covers: 01/01/2022 - 12/31/2022

Participants

Anna Cates (U MN), Eileen Kladivko (Purdue), Andrea Basche (U NE), Peter Tomlinson (Kansas State), Mark Licht (Iowa State), Marisol Berti (ND State), Osler Ortez (Ohio State), Matt Ruark (U. WI, virtual), Giovani Preza Fontes (U. IL, virtual), Kim Cassida (Mich State, virtual), Vance Owens (NIFA, virtual), Mathieu Ngouajio (NIFA, virtual), Kendall Lamkey (Iowa State, virtual)

Brief Summary of Minutes

Accomplishments

<p><strong>Accomplishments:</strong></p><br /> <p>The NCCC-211 team is an integral part of the Midwest Cover Crop Council (MCCC); as such our efforts are often one and the same. NCCC-211 has active or in-process representation from ten states now, having gained new representatives from Ohio and Illinois. We continue to look for new representation from MO and SD. The MCCC has representation from all 12 states and 2 Canadian provinces with university, ARS, agri-business, agency, farmer, and non-profit representation. NCCC-211 and MCCC are focused on developing tools and outreach materials to facilitate widespread successful adoption of cover crops across the Midwest.&nbsp; The MCCC was awarded a 2022 Educational and Outreach Material Award for Short Publications, from the American Society of Agronomy, for our series &ldquo;Cover Crop Recipes.&rdquo;</p><br /> <p><strong>&nbsp;</strong></p><br /> <p><strong>Short-term outcomes:</strong> There is greater awareness and understanding of cover crops and their potential beneficial effects across the Midwest.&nbsp; Farmers are asking for more information and guidance about how to integrate them into their cropping systems.&nbsp; Members of NCCC-211 and MCCC have contributed to this greater understanding among agricultural audiences.</p><br /> <p><strong>&nbsp;</strong></p><br /> <p><strong>Outputs:</strong></p><br /> <p><span style="text-decoration: underline;">Cover Crop Recipes</span> continue to be developed to provide a starting point for farmers who are new to growing cover crops. In total 34 state specific Recipes (4 new Recipes in 2022) have been developed.</p><br /> <p><span style="text-decoration: underline;">A new intern</span> worked with states on updating the state pages on our website, along with developing a webpage on termination of cover crops.</p><br /> <p>The <span style="text-decoration: underline;">website</span> was refreshed and updated to make navigation easier and to give it a more modern look and feel.</p><br /> <p>The <span style="text-decoration: underline;">province of Manitoba</span> was added to the MCCC.</p><br /> <p><span style="text-decoration: underline;">New funds from NRCS</span> were obtained, which allowed hiring a half-time Extension Educator at MSU who will work on developing and implementing cover crop trainings for NRCS and other field staff who work directly with farmers.</p><br /> <p><span style="text-decoration: underline;">With the cover crop decision tool, we</span> continued to update states&rsquo; data on a rolling basis, with two more states completed in 2022.&nbsp; This work is done in conjunction with technical experts in each state, building consensus among professionals working in each state.</p><br /> <p><span style="text-decoration: underline;">USDA-NIFA SAS CAP Precision Sustainable Agriculture (PSA) Coordinated Agriculture Project</span> continued with representatives from 6 states (IA, IN, KS, MI, NE, WI). This project has coordinated research protocols for on-farm experiments (3 per state) in IA, IN, KS, NE, and WI to investigate soil moisture and cover crop decomposition. Additionally, experiment station trials include cover crop plus optimal N rates and termination timing influence on pest/disease dynamics, and cover crop decomposition. In addition, the newly developed undergraduate cover crop course that was offered for the first time in the fall of 2021 simultaneously at 7 institutions, was offered again in fall 2022. Michigan State University and University of Nebraska - Lincoln representatives promoted MCCC/NCCC-211 materials to be included (i.e. all students received a Cover Crop Field Guide, management course module showcased the Selector Tool). This course has received excellent reviews from students who enjoy learning from students and faculty across the 7 institutions.</p><br /> <p><strong>&nbsp;</strong></p><br /> <p><strong>Activities:</strong></p><br /> <p>Number of graduate students, postdocs, and visiting scientists involved in cover crop work: 71</p><br /> <p>Number of presentations: 233</p><br /> <p>Number of research publications: 56</p><br /> <p>&nbsp;</p><br /> <p><strong>Milestones:</strong></p><br /> <p>Through strategic planning the MCCC executive committee refined 3 key focus areas: education, network growth, and collective impact. <strong>Educational</strong> milestones have been achieved through publication of additional cover crop recipes, new web materials such as the termination page, and assistance with trainings and workshops around the region. A <strong>network growth </strong>milestone was achieved by MCCC participating as an exhibitor at several national meetings attended by farmers and other agribusiness, such as Commodity Classic, to help broaden the reach and distribution of outreach materials. <strong>Collective impact</strong> is being accomplished through the SAS CAP project and also the work of the Program Manager in assisting the new Western Cover Crops Council in their development of a Selector Tool for their region. .</p><br /> <p>&nbsp;</p>

Publications

<ul><br /> <li>Malone, L.C., S. Mourtzinis, J.M. Gaska, J.G. Lauer, M.D. Ruark, and S.P. Conley. 2022. Cover crops in a Wisconsin annual cropping system: Feasibility and yield effects. Agronomy J. 114:1052-1067.</li><br /> <li>Abha Bhattarai, Garrett Steinbeck, Brian B. Grant, Margaret Kalcic, Kevin King, Ward Smith, Nuo Xu, Jia Deng, and Sami Khanal. 2022. Development of a calibration approach using DNDC and PEST for improving estimates of management impacts on water and nutrient dynamics in an agricultural system. Environmental Modelling &amp; Software. <a href="https://doi.org/10.1016/j.envsoft.2022.105494">https://doi.org/10.1016/j.envsoft.2022.105494</a>.</li><br /> <li>Kushal KC, and Sami Khanal. 2023. Agricultural productivity and water quality tradeoffs of winter cover crops at a landscape scale through the lens of remote sensing. Journal of Environmental Management. <a href="https://doi.org/10.1016/j.jenvman.2022.117212">https://doi.org/10.1016/j.jenvman.2022.117212</a>.</li><br /> <li>Varga, B. Csukas, S. Khanal, and B.R. Bakshi. 2023. Lessons from the biosphere for the anthroposphere: Analysis of recycling structures of conservational measures. Resources, Conservation and Recycling. <a href="https://doi.org/10.1016/j.resconrec.2023.106919">https://doi.org/10.1016/j.resconrec.2023.106919</a>.</li><br /> <li>Huo, D., Frey, T., Lindsey, L. E., &amp; Benitez, M.-S. 2022. Yield and soil responses to adding wheat to a corn&ndash;soybean rotation. Crop Forage &amp; Turfgrass Mgmt. <a href="https://doi.org/10.1002/cft2.20143">https://doi.org/10.1002/cft2.20143</a>.</li><br /> <li>McGlinch, G. J., &amp; Lindsey, L. E. 2022. Seeding rate effect on winter malting barley yield and quality. Agronomy Journal. <a href="https://doi.org/10.1002/agj2.21094">https://doi.org/10.1002/agj2.21094</a>.</li><br /> <li>Raudenbush, A.L., Pekarcik, A.J.; Haden, V.R.; and Tilmon, K.J. 2021. Evaluation of Slug Refuge Traps in a Soybean Reduced-Tillage Cover Crop System. Insects 2021, 12, 62. <a href="https://doi.org/10.3390/insects12010062">https://doi.org/10.3390/insects12010062</a>.</li><br /> <li>Verhoff, K. A., Phippen, W. B., Heller, N. J., &amp; Lindsey, A. (2022). Winter-type oilseed pennycress crop staging guide. Crop, Forage &amp; Turfgrass Management, 8, e20165. <a href="https://doi.org/10.1002/cft2.20165">https://doi.org/10.1002/cft2.20165</a>.</li><br /> <li>Koirala, D. Barker, C. Helfer, W. Phippen, N. Heller, A. Hard, S. Wells, and A. Lindsey. 2022. A process to enhance germination of a wild pennycress variety. Seed Science and Technology, 50, 2, 195-205. <a href="https://doi.org/10.15258/sst.2022.50.2.03">https://doi.org/10.15258/sst.2022.50.2.03</a>.</li><br /> <li>Martin, T., Culman, S. &amp; Sprunger, C.D. 2022. Quality or Quantity? Determining the Impact of Fine Root Traits on Soil Health in Row Crop Agriculture. J Soil Sci Plant Nutr 22, 2322&ndash;2333. <a href="https://doi.org/10.1007/s42729-022-00811-1">https://doi.org/10.1007/s42729-022-00811-1</a></li><br /> <li>Martin Tvisha, Sprunger Christine&nbsp;D. 2022. Sensitive Measures of Soil Health Reveal Carbon Stability Across a Management Intensity and Plant Biodiversity Gradient. Frontiers in Soil Science. <a href="https://www.frontiersin.org/articles/10.3389/fsoil.2022.917885">https://www.frontiersin.org/articles/10.3389/fsoil.2022.917885</a>.</li><br /> <li>Blanco‐Canqui, H., 2022. Cover crops and carbon sequestration: Lessons from US studies.&nbsp;<em>Soil Science Society of America Journal</em>,&nbsp;<em>86</em>(3), pp.501-519.</li><br /> <li>Grint, K., Proctor, C., DeWerff, R., Smith, D., Arneson, N., Arriaga, F., Stoltenberg D., Werle, R. (2022). Low Carryover Risk of Corn and Soybean Herbicides Across Soil Management Practices and Environments.&nbsp;<em>Weed Technol.</em>1-25. doi:10.1017/wet.2021.97</li><br /> <li>Inveninato Carmona, G., Robinson, E., Tonon Rosa, A., Proctor, C.A., Anthony Justin McMechan, A.J. (2022) Impact of cover crop planting and termination dates on arthropod activity in the following corn.&nbsp;<em>Journal of Economic Entomology</em>, 115(4), 1177-1190 doi: <a href="https://doi.org/10.1093/jee/toac090">https://doi.org/10.1093/jee/toac090</a></li><br /> <li>Koehler-Cole, K.,&nbsp; Elmore, R, Blanco-Canqui, H., Francis, C., Shaprio, C., Proctor, C., Ruis, S., Heeren, D. (2022). Cover crop planting practices determine their performance in the US Corn Belt. Agron. J. <a href="https://doi.org/10.1002/agj2.21247">https://doi.org/10.1002/agj2.21247</a></li><br /> <li>Krupek, F.S., Mizero, S., Redfearn, D., and <strong>Basche, A.</strong> Assessing how cover crops close the soil health gap at on-farm experiments. Agricultural and Environmental Letters</li><br /> <li>Krupek, F.S., Redfearn, D., Eskridge, K.M. and <strong>Basche, A.,</strong> Ecological intensification with soil health practices demonstrates positive impacts on multiple soil properties: A large-scale farmer-led experiment.&nbsp;Geoderma.&nbsp;409, 115594. <a href="https://doi.org/10.1016/j.geoderma.2021.115594">https://doi.org/10.1016/j.geoderma.2021.115594</a></li><br /> <li>Lucadamo, E., A. Holmes, S.E. Wortman, and A. Yannarell. 2022. Post-termination effects of cover crop monocultures and mixtures on soil inorganic nitrogen and microbial communities on two organic farms in Illinois. Frontiers in Soil Science <a href="https://doi.org/10.3389/fsoil.2022.824087">https://doi.org/10.3389/fsoil.2022.824087</a></li><br /> <li>Samuelson, M.B., Reid, E.V., Drijber, R., Jeske, E., Blanco-Canqui, H., Mamo, M., Kadoma, I. and Wortman, S.E., 2022. Effects of compost, cover crops, and local conditions on degradation of two agricultural mulches in soil.&nbsp;<em>Renewable Agriculture and Food Systems</em>,&nbsp;<em>37</em>(2), pp.128-141.</li><br /> <li>Gutknecht, J., Journey, A., Peterson, H., Blair, H., &amp; Cates, A. (2022). Cover crop management practices to promote soil health and climate adaptation: Grappling with varied success from farmer and researcher observations. <em>JOURNAL OF ENVIRONMENTAL QUALITY</em>. <a href="http://dx.doi.org/10.1002/jeq2.20383">doi: 10.1002/jeq2.20383</a></li><br /> <li>Thurston, C.L., Grossman, J.M., Fudge, R. <em>et al.</em> Cold stress reduces nodulation and symbiotic nitrogen fixation in winter annual legume cover crops. <em>Plant Soil</em> 481, 661&ndash;676 (2022). <a href="https://doi.org/10.1007/s11104-022-05667-z">https://doi.org/10.1007/s11104-022-05667-z</a></li><br /> <li>Candelaria-Morales, N., Grossman, J., Fernandez, A., &amp; Rogers, M. (2022). Exploring multifunctionality of summer cover crops for organic vegetable farms in the Upper Midwest. <em>Renewable Agriculture and Food Systems,</em> <em>37</em>(3), 198-205. doi:10.1017/S1742170521000545</li><br /> <li>Bloszies SA, Reberg‐Horton SC, Heitman JL, Woodley AL, Grossman JM, Hu S. Legume cover crop type and termination method effects on labile soil carbon and nitrogen and aggregation. Agronomy Journal. 2022 May;114(3):1817-32.</li><br /> <li>Perkus, E. A., Grossman, J. M., Pfeiffer, A., Rogers, M. A., &amp; Rosen, C. J. (2022). Exploring Overwintered Cover Crops as a Soil Management Tool in Upper-midwest High Tunnels, <em>HortScience</em>, <em>57</em>(2), 171-180. Retrieved Feb 10, 2023, from <a href="https://journals.ashs.org/hortsci/view/journals/hortsci/57/2/article-p171.xml">https://journals.ashs.org/hortsci/view/journals/hortsci/57/2/article-p171.xml</a></li><br /> <li>Perrone S, Grossman J, Liebman A, Wells S, Sooksa-nguan T, Jordan N. Legume cover crop contributions to ecological nutrient management in upper Midwest vegetable systems. Frontiers in Sustainable Food Systems. 2022:129.</li><br /> <li>Gregg S, Coulter JA, Strock JS, Liu R, Garcia y Garcia A. Double-Cropped Winter Camelina with and without Added Nitrogen: Effects on Productivity and Soil Available Nitrogen. Agriculture. 2022 Sep 15;12(9):1477.</li><br /> <li>Mohammed YA, Gesch RW, Matthees HL, Wells SS. Maturity selection but not sowing date enhances soybean productivity and land use in a winter camelina&ndash;soybean relay system. Food and Energy Security. 2022 Feb;11(1):e346.</li><br /> <li>Cubins JA, Wells SS, Walia MK, Wyse DL, Becker R, Forcella F, Gardner RD, Johnson GA, Gesch RW. Harvest attributes and seed quality predict physiological maturity of pennycress. Industrial Crops and Products. 2022 Feb 1;176:114355.</li><br /> <li>Moore VM, Schlautman B, Fei SZ, Roberts LM, Wolfe M, Ryan MR, Wells S, Lorenz AJ. Plant Breeding for Intercropping in Temperate Field Crop Systems: A. Breeding for Intercropping. 2022 Dec 2.</li><br /> <li>Rakkar M, Jungers JM, Sheaffer C, Bergquist G, Grossman J, Li F, Gutknecht JL. Soil health improvements from using a novel perennial grain during the transition to organic production. Agriculture, Ecosystems &amp; Environment. 2023 Jan 1;341:108164.</li><br /> <li>Anderson, J.V, B. Bigger, K. Howatt, J. Mettler, and M.T. Berti. 2022. Weed pressure, yield and nutrient content in field grown sulfonylurea camelina and canola. Agronomy https://doi.org//10.3390/agronomy1932225</li><br /> <li>Picasso, V., M. Berti, K. Cassida. S. Collier, D. Fang, A. Finan, M. Krome, D. Hanaway, W. Lamp., and A.W. Stevens. 2022. Diverse perennial circular forage systems are needed to foster resilience, ecosystem services, and socioeconomic benefits in agricultural landscapes. Grassland Res. <em>doi: 10.1002/glr2.12020</em></li><br /> <li>Roth R.T., K. Chen, J.R. Scott, J. Jung, Y. Yang, J.J. Camberato, S.D. Armstrong. 2023. Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum Vegetation Indices. Remote Sensing 15 (3), 580</li><br /> <li>Preza-Fontes, G., H. Miller, R. Roth, S. D. Armstrong. 2022. Corn yield response to starter nitrogen rates following cereal rye cover crop. Crop, Forage &amp; Turfgrass Management 8 (2), e20187.</li><br /> <li>Ma, Meilin and Reeling, Carson and Hughes, Megan and Armstrong, Shalamar and Roth, Richard, Comparison of Conservation Incentives under Long-Run Yield Uncertainty and Farmer Risk Aversion (September 29, 2022). Available at SSRN: https://ssrn.com/abstract=4233615 or <a href="http://dx.doi.org/10.2139/ssrn.4233615">http://dx.doi.org/10.2139/ssrn.4233615</a></li><br /> <li>Gupta R; J. W. Coppess; H. Jeong; M. Ruffatti; S. D. Armstrong, &amp; R. Bhattarai. 2022. Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT Model. Agricultural Water Management 272, 107862.</li><br /> <li>G. Lacey, J. J. Camberato, &amp; S. D. Armstrong. 2022. Field gased <sup>15</sup>N estimate of cereal rye residue nitrogen release in a corn and soybean system. Nutrient Cycling in Agroecosystems, 1-13.</li><br /> <li>Dada, A. O., D. R. Smith &amp; S. D. Armstrong. 2022. Phosphorus sorption and desorption as impacted by long-term cover cropping at two soil surface depths. Journal of Environmental Quality 52 (1), 126-136</li><br /> <li>Roth, R. T., G. Lacey, J. J.Camberato, &amp; S. D. Armstrong. 2022. Quantifying the fate of nitrogen from cereal rye root and shoot biomass using 15N. Nutrient Cycling in Agroecosystems, 1-16.</li><br /> <li>Thompson, N. M., M. N. Hughes, E. K. Nuworsu, , C. J. Reeling, S. D. Armstrong, J. R. Mintert, K. A. Foster. (2022). Opportunities and challenges associated with &ldquo;carbon farming&rdquo; for u.s. row-crop producers. choices. DOI:&nbsp;10.22004/ag.econ.329528</li><br /> <li>Quinn, D., H. Poffenbarger, F.E. Miguez, and C.D. Lee. 2023. Optimum Nitrogen Rate and Timing in Corn Following a Rye Cover Crop. Field Crops Res. 291:108794.</li><br /> <li>Quinn, D.J., H.J. Poffenbarger, and C.D. Lee. 2022. Rye Cover Crop and In-Furrow Fertilizer and Fungicide Impacts on Corn Optimum Seeding Rate and Grain Yield. Europ. J. Agron. 139:126529.</li><br /> <li>L. Hodgskiss, B.G. Young, S.D. Armstrong and W.G. Johnson. 2022.Utilizing cover crops for weed suppression within buffer areas of 2, 4-D-resistant soybean.Weed Technology 36 (1), 118-129</li><br /> <li>Alves de Oliveira, L., A. Mu&ntilde;oz Ventura,&nbsp;<strong> Preza-Fontes</strong>, K.D. Greer, C.M. Pittelkow, R. Bhattarai, R. Christianson, &amp; L. Christianson. 2022. Assessing the concept of control points for dissolved reactive phosphorus losses in subsurface drainage.&nbsp;<em>Journal of Environmental Quality.</em>, 51, 1155&ndash;1167.&nbsp;<a href="https://doi.org/10.1002/jeq2.20400">https://doi.org/10.1002/jeq2.20400</a></li><br /> <li>Mu&ntilde;oz‐Ventura, A., R.D. Christianson, R. Bhattarai, and L.E. Christianson. 2022. Runoff and drainage trade-offs from cover crops exposed to freeze-thaw events. <em>Agrosystems, Geosciences &amp; Environment</em>, 5, 20334. <a href="https://doi.org/10.1002/agg2.20324">https://doi.org/10.1002/agg2.20324</a></li><br /> <li>Preza-Fontes, G., L.E. Christianson, K. Greer, R. Bhattarai, and C.M. Pittelkow. 2022. In-season split nitrogen application and cover cropping effects on nitrous oxide emissions in rainfed maize.&nbsp;<em>Agriculture, Ecosystems &amp; Environment</em>.&nbsp;<a href="https://doi.org/10.1016/j.agee.2021.107813">https://doi.org/10.1016/j.agee.2021.107813</a>.</li><br /> <li>Acharya, J., T.B. Moorman, T.C. Kaspar, A.W. Lenssen, <strong> Gailans</strong>, and A. Robertson. 2022. Effect of planting into a green winter cereal rye cover crop on growth and development, seedling disease and yield of corn. Plant Dis. (doi.org/10.1094/PDIS-04-21-0836-RE).</li><br /> <li>Bartel, C.A., K.J. Moore, S. Fei, A.W. Lenssen, R.L. Hintz, and S.M. Kling. 2022. Evaluating chemical suppression treatments to alter red:far-red ratio in perennial groundcovers for maize production. Agronomy 12:1854 (doi10.3390/agronomy12081854).</li><br /> <li>Bartel, C.A., K.J. Moore, S. Fei, A.W. Lenssen, R.L. Hintz, and S.M. Kling. 2022. Evaluating strip and no-till maintenance of perennial groundcovers for annual grain production. Crops 2:268-286 (doi:10.3390/crops2030020).</li><br /> <li>Chen, A.A., S.Fei, A.W. Lenssen, and K.J. Moore. 2022. Photothermal controls of vegetative dormancy in <em>Poa secunda</em>. Grassland Research (doi:10.1002/glr2.12008).</li><br /> <li>Chen, A., S. Fei, A.W. Lenssen, and K.J. Moore. 2022. Evaluating cool-season grass species as potential perennial groundcover for maize production. Agronomy Journal 114:2415&ndash;2429 (doi:10.1002/agj2.21087).</li><br /> <li>Kimmelshue, C., A.S. Goggi, and K. Moore. 2022. Single plant grain yield in corn (<em>Zea mays</em>) based on emergence time, seed size, planting depth, and plant to plant distance. Crops 2:62-86 (doi:10.3390/crops2010006).</li><br /> <li>Kimmelshue, C., A.S. Goggi, and K. Moore. 2022. Seed size, planting depth, and a perennial ground cover system effect on corn emergence and grain yield. Agronomy 12:437 (doi:10.3390/agronomy12020437).</li><br /> <li>Leuthold, S.J., D. Quinn, F. Miguez, O. Wendroth, M. Salmer&oacute;n, H. Poffenbarger. 2022. Topographic effects on soil microclimate and surface cover crop residue decomposition in rolling cropland. Agriculture, Ecosystems &amp; Environment (doi.org/10.1016/j.agee.2021.107609).</li><br /> <li>Nichols, V., E.B. Moore, <strong> Gailans</strong>, T.C. Kaspar, and M. Liebman. 2022. Site-specific effects of winter cover crops on soil water storage. Agriculture, Ecosystems &amp; Environment (doi.org/10.1002/agg2.20238).</li><br /> <li>Schooman, E.D. and J.G. Arbuckle. 2022. Cover crops and speciality crop agriculture: Exploring cover crop use among begetable and fruit growers in Michigan and Ohio. J. Soil Water Cons. 77:403-417 (doi.org/10.2489/jswc.2022.00006).</li><br /> <li>Quinn, D.J., H.J. Poffenbarger, F.E. Miguez, C.D. Lee. 2023. Corn optimum nitrogen fertilizer rate and application timing when following a rye cover crop. Field Crops Research (doi.org/10.1016/j.fcr.2022.108794).</li><br /> </ul><br /> <p>&nbsp;</p>

Impact Statements

  1. 3) The NCCC-211 and MCCC continues to be integral in multi-state research projects such as the AFRI-Sustainable Agriculture Systems (SAS) program funded project “Enhancing the Sustainability of US Cropping Systems through Cover Crops and an Innovative Information and Technology Network.”
Back to top

Date of Annual Report: 04/10/2024

Report Information

Annual Meeting Dates: 02/13/2024 - 02/13/2024
Period the Report Covers: 01/01/2023 - 12/31/2023

Participants

Mark Licht (Iowa St), Eileen Kladivko (Purdue), Anna Cates (U MN), Peter Tomlinson (K-State), Marisol Berti (ND State), Shalamar Armstrong (Purdue), Giovani Preza Fontes (Univ of Ill), Kim Cassida (Michigan State), Andrea Basche (UNL, virtual), Kendall Lamkey (Iowa St, virtual), Daniel Smith (U-Wisc), and Osler Ortez (Ohio State).

Brief Summary of Minutes

Accomplishments

<p>The NCCC-211 team is an integral part of the Midwest Cover Crop Council (MCCC); as such our efforts are often one and the same. NCCC-211 has active or in-process representation from ten states now, having gained new representatives from Ohio and Illinois in 2023. We continue to look for new representation from MO and SD. The MCCC aims at participation from all 12 states and 2 Canadian provinces with university, ARS, agri-business, agency, farmer, and non-profit representation. NCCC-211 and MCCC are focused on developing tools and outreach materials to facilitate widespread successful adoption of cover crops across the Midwest.&nbsp;The MCCC has developed outreach and education efforts at Commodity Classic in 2022 (Orlando, FL) and 2023 (Houston, TX), with a booth present at each event and ample interaction with stakeholders. Also, MCC added presence at the Soil and Water Conservation Society annual meeting.</p><br /> <p><strong>Short-term outcomes</strong></p><br /> <p>There is greater awareness and understanding of cover crops and their potential beneficial effects across the Midwest.&nbsp;A larger number of students have been involved in core cover crop research and training. Farmers are asking for more information and guidance about integrating them into their cropping systems.&nbsp;Members of NCCC-211 and MCCC have contributed to this greater understanding among agricultural audiences.</p><br /> <p>For example, Michigan State hosted a cover crop in-service training for agricultural professionals funded by a grant from NRCS. It trained 46 ag professionals from 30 counties on cover crop practices, of which 88% indicated they would take action resulting from the training (estimated reach was 2688 farmers). Like in Michigan, several similar programs are hosted annually in other participating states.</p><br /> <p><strong>Outputs</strong></p><br /> <p><span style="text-decoration: underline;">Cover Crop Recipes</span>&nbsp;continue to be developed to provide a starting point for farmers who are new to growing cover crops. In total 34 state specific Recipes have been developed.</p><br /> <p><span style="text-decoration: underline;">A new intern</span>&nbsp;worked on validating state data on the background sheets for the Decision Tool for each state.</p><br /> <p>The&nbsp;<span style="text-decoration: underline;">website</span>&nbsp;was refreshed and updated to make navigation easier and to give it a more modern look and feel.</p><br /> <p><span style="text-decoration: underline;">New funds from NRCS</span>&nbsp;were obtained, which allowed hiring a half-time Extension Educator at MSU who will work on developing and implementing cover crop trainings for NRCS and other field staff who work directly with farmers.</p><br /> <p><span style="text-decoration: underline;">With the cover crop decision tool</span>, we&nbsp;continued to update states&rsquo; data on a rolling basis.&nbsp;This work is done in conjunction with technical experts in each state, building consensus among professionals working in each state.</p><br /> <p>New <span style="text-decoration: underline;">cover crop training</span>, three trainings last Fall 2023 (Indiana, Iowa, Michigan). These trainings were targeted for NRCS and industry professionals as a pilot for a continued trainings in all 12 of the North Central U.S. states.</p><br /> <p>New <span style="text-decoration: underline;">cover crop training module project</span> built from a college course developed from Precision Sustainable Agriculture project. The course is being modified for online modules to be available for and used by agricultural professionals.</p><br /> <p>The MCCC <span style="text-decoration: underline;">professional development program track for graduate students was</span> started in 2023, continued at the 2024 MCCC annual meeting. Graduate students from the Midwest region presented posters about the cover crop research. About 20 students presented research posters on cover crops in 2023 annual meeting.</p><br /> <p><span style="text-decoration: underline;">USDA-NIFA SAS CAP Precision Sustainable Agriculture (PSA) Coordinated Agriculture Project</span>&nbsp;continued with representatives from 6 states (IA, IN, KS, MI, NE, WI). This project has coordinated research protocols for on-farm experiments (3 per state) in IA, IN, KS, NE, and WI to investigate soil moisture and cover crop decomposition. Additionally, experiment station trials include cover crop plus optimal N rates and termination timing influence on pest/disease dynamics, and cover crop decomposition. In addition, the newly developed undergraduate cover crop course that was offered for the first time in the fall of 2021 simultaneously at 7 institutions, the course was offered again in fall 2022, and in fall 2023. Michigan State University and University of Nebraska - Lincoln representatives promoted MCCC/NCCC-211 materials to be included (i.e. all students received a Cover Crop Field Guide, management course module showcased the Selector Tool). This course has received excellent reviews from students who enjoy learning from students and faculty across the seven institutions.</p><br /> <p><strong>Activities</strong></p><br /> <p>Number of graduate students, postdocs, and visiting scientists involved in cover crop work: 92</p><br /> <p>Number of presentations: 157</p><br /> <p>Number of research publications: 61</p><br /> <p>Number of Extension publications: 74</p><br /> <p>Number of Abstracts: 24</p><br /> <p>Number of thesis and dissertations: 24</p><br /> <p>Number of grants: 8</p><br /> <p><strong>Milestones</strong></p><br /> <p>Through strategic planning the MCCC executive committee refined 3 key focus areas: education, network growth, and collective impact.&nbsp;</p><br /> <p><strong>Educational</strong>&nbsp;milestones have been achieved through publication of additional cover crop recipes, new web materials such as the termination page, and assistance with trainings and workshops around the region.</p><br /> <p>A&nbsp;<strong>network growth&nbsp;</strong>milestone was achieved by MCCC participating as an exhibitor at several national meetings attended by farmers and other agribusiness, such as Commodity Classic and Soil and Water Conservation Society annual meeting, to help broaden the reach and distribution of outreach materials.&nbsp;</p><br /> <p><strong>Collective impact</strong>&nbsp;is being accomplished through the SAS CAP project and also the work of the Program Manager in assisting the new Western Cover Crops Council in their development of a Selector Tool for their region.</p>

Publications

<p><strong>Peer-reviewed Publications (61 listed)</strong></p><br /> <ol><br /> <li>Brainard, DC; Hayden, ZD; Benzle, MM; Metiva, M; Appenfeller, LR; Szendrei, Z. 2023. Strip-tillage and Zonal Cover Cropping Effects on Organic Squash Production. HORTSCIENCE 58:197-204. DOI: 10.21273/HORTSCI16863-22</li><br /> <li>Bressler, A. and J. Blesh. 2023. A grass&ndash;legume cover crop maintains nitrogen inputs and nitrous oxide fluxes from an organic agroecosystem. Ecosphere 14:e4428.</li><br /> <li>Curtright, AJ; Renner, KA; Tiemann, LK. 2023. Availability of dissolved organic carbon drives differences in microbial nitrogen-cycling processes between two sites with cover crops interseeded into corn. SOIL SCIENCE SOCIETY OF AMERICA. DOI: 10.1002/saj2.20604</li><br /> <li>Fisher, JL; Sprague, CL. 2023. Contributions of shading, soybean (Glycine max) row width, and planting green on horseweed (Conyza canadensis) management compared with soil-applied residual herbicides. WEED TECHNOLOGY.&nbsp; DOI: 10.1017/wet.2023.49&nbsp;</li><br /> <li>Guo, T; Marquart-Pyatt, ST; Beethem, K; Denny, R; Lai, J. 2023. Scaling up agricultural conservation: Predictors of cover crop use across time and space in the US Upper Midwest. JOURNAL OF SOIL AND WATER CONSERVATION&nbsp; 78:335-346. DOI: 10.2489/jSWC.2023.00084&nbsp;</li><br /> <li>Guo, T; Marquart-Pyatt, ST; Robertson, GP. 2023. Using three consecutive years of farmer survey data to identify prevailing conservation practices in four Midwestern US states. RENEWABLE AGRICULTURE AND FOOD SYSTEMS, Volume: 38, Article: e44. DOI: 0.1017/S1742170523000364&nbsp;</li><br /> <li>Hayden, ZD; Ngouajio, M; Brainard, DC. 2023. Rye-vetch residue quality and plastic mulch affect soil nitrogen dynamics in vegetable production systems. AGRONOMY JOURNAL 115:1463-1477. DOI: 10.1002/agj2.21318</li><br /> <li>Liptzin, D., E. L. Rieke, S. B. Cappellazzi, G. M. Bean, M. Cope, K. L. Greub, C. E. Norris, P. W. Tracy, E. Aberle, A. Ashworth, O. B. Tavarez, A. I. Bary, R. L. Baumhardt, A. B. Gracia, D. C. Brainard, J. R. Brennan, D. B. Reyes, D. Bruhjell, C. N. Carlyle, J. J. Crawford, C. F. Creech, S. W. Culman, B. Deen, C. J. Dell, J. D. Derner, T. F. Ducey, S. W. Duiker, R. S. Dungan, M. F. Dyck, B. H. Ellert, M. H. Entz, A. E. Solorio, S. J. Fonte, S. Fonteyne, A. Fortuna, J. L. Foster, L. M. Fultz, A. V. Gamble, C. M. Geddes, D. Griffin-LaHue, J. H. Grove, S. K. Hamilton, X. Hao, Z. D. Hayden, N. Honsdorf, J. A. Howe, J. A. Ippolito, G. A. Johnson, M. A. Kautz, N. R. Kitchen, S. Kumar, K. S. Kurtz, F. J. Larney, K. L. Lewis, M. Liebman, A. L. Ramirez, S. Machado, B. Maharjan, M. A. Gami&ntilde;o, W. E. May, M. P. McClaran, M. D. McDaniel, N. Millar, J. P. Mitchell, A. D. Moore, P. A. Moore Jr, M. M. Guti&eacute;rrez, K. A. Nelson, E. C. Omondi, S. L. Osborne, L. O. Alcal&aacute;, P. Owens, E. M. Pena-Yewtukhiw, H. J. Poffenbarger, B. P. Lira, J. R. Reeve, T. M. Reinbott, M. S. Reiter, E. L. Ritchey, K. L. Roozeboom, Y. Rui, A. Sadeghpour, U. M. Sainju, G. R. Sanford, W. F. Schillinger, R. R. Schindelbeck, M. E. Schipanski, A. J. Schlegel, K. M. Scow, L. A. Sherrod, A. L. Shober, S. S. Sidhu, E. S. Moya, M. S. Luce, J. S. Strock, A. E. Suyker, V. R. Sykes, H. Tao, A. T. Campos, L. L. Van Eerd, H. M. van Es, N. Verhulst, T. J. Vyn, Y. Wang, D. B. Watts, D. L. Wright, T. Zhang, C. L. Morgan, and C. W. Honeycutt. 2023. An evaluation of nitrogen indicators for soil health in long-term agricultural experiments. Soil Science Society of America Journal 87:868-884. https://doi.org/10.1002/saj2.20558</li><br /> <li>Peng, YJ; Rieke, EL; Chahal, I; Norris, CE; Janovicek, K; Mitchell, JP; Roozeboom, KL; Hayden, ZD; Strock, JS; Machado, S; Sykes, VR; Deen, B; Tavarez, OB; Gamble, AV; Scow, KM; Brainard, DC; Millar, N; Johnson, GA; Schindelbeck, RR; Kurtz, KSM; van Es, H; Kumar, S; Van Eerd, LL. 2023. Maximizing soil organic carbon stocks under cover cropping: insights from long-term agricultural experiments in North America. AGRICULTURE ECOSYSTEMS &amp; ENVIRONMENT Vol: 356, Article: 108599. DOI: 10.1016/j.agee.2023.108599</li><br /> <li>Pokharel, A; Hennessy, DA; Wu, FLC. 2023. Health burden associated with tillage-related PM2.5 pollution in the United States, and mitigation strategies. SCIENCE OF THE TOTAL ENVIRONMENT, Vol: 903, Article: 166161. DOI: 10.1016/j.scitotenv.2023.166161&nbsp;</li><br /> <li>Sprunger, CD; Lindsey, A; Lightcap, A. 2023. Above- and belowground linkages during extreme moisture excess: leveraging knowledge from natural ecosystems to better understand implications for row-crop agroecosystems. JOURNAL OF EXPERIMENTAL BOTANY 74:2845-2859. DOI: 10.1093/jxb/erad045</li><br /> <li>Benucci, G. M. N., E. R. Toosi, F. Yang, T. L Marsh, G. M. Bonito, and A. Kravchenko. 2023. The microbiome structure of decomposing plant leaves in soil depends on plant species, soil pore sizes, and soil moisture content. Frontiers in Microbiology (Terrestrial Microbiology) Vol. 14. doi: 10.3389/fmicb.2023.1172862.</li><br /> <li>Alexander, J. R., Venterea, R. T., &amp; Baker, J. M. (2023). Estimating nitrogen inputs from a Kura clover living mulch system for maize production. Plant and Soil, 1-12.</li><br /> <li>Alexander, J. R., Baker, J. M., Gamble, J. D., Venterea, R. T., &amp; Spokas, K. A. (2023). Spatiotemporal distribution of roots in a Maize-Kura clover living mulch system: Impact of tillage and fertilizer N source. Soil and Tillage Research, 227, 105590.</li><br /> <li>Alexander, J. R., Baker, J. M., &amp; Venterea, R. T. (2023). Maize performance in a kura clover living mulch under drought conditions. Agrosystems, Geosciences &amp; Environment, 6(1), e20329.</li><br /> <li>Ley, E., G. Johnson, S. Wells, R. Becker, L. Stahl, R. Miller, and D. Sarangi. (2023). Residual herbicides in corn and their effect on fall-planted cover crop species. Agrosystems, Geosciences, and Environment, 6:e20446. https://doi.org/10.1002/agg2.20446</li><br /> <li>Rabin, K.C., G.A. Johnson, J.S. Strock, N. Jordon, A. Garcia y Garcia. (2023). Influence of tillage and cover crop mixtures interseeded in maize and soybean. Agron. J. 115(3): 1188-1201.</li><br /> <li>Peng, Y., et al. (2023). Maximizing soil organic carbon stocks under cover cropping: insights from long-term agricultural experiments in North America. Agric. Ecosyst. Environ. 356:108599.</li><br /> <li>Jordan, N., Valley, W., Donovan, D., Clegg, D., Grossman, J., Hunt, N., . . . Stein, M. (2023). Scaffolding Collective Agency Curriculum within Food-Systems Education Programs. Frontiers in Sustainable Food Systems.</li><br /> <li>Schaedel, M. (Graduate Student), Ishii, S., Grossman, J., Venterea, R., Paul, B., Mutimura, M., &amp; Wang, H. (2023). Temporal assessment of N-cycle microbial functions in a tropical agricultural soil using gene co-occurrence networks. PLOS One.18(2): e0281442</li><br /> <li>DiGiacomo, G., Gieske, M. (Post Doc), Grossman, J., Jacobson, K., Peterson, H., &amp; Rivard, C. (2023). Do cover crops pay? Economic analysis of a hairy vetch-tomato rotation in organic high tunnels in the Upper Midwest. Renewable Agriculture and Food Systems. 38:e10</li><br /> <li>Stahl, L., and A. Garcia y Garcia. (2023) Performance of Summer-Seeded Cover Crops.&nbsp; NACAA National meeting, Des Moines, 8/13-8/17/23.&nbsp; Peer Reviewed and selected as 2nd Place National Winner.</li><br /> <li>Blanco-Canqui, H., Ruis, S.J., Koehler-Cole, K., Elmore, R.W., Francis, C.A, Shapiro, C.A, Proctor, C.A., Ferguson, R.B. (2023). Cover crops and soil health in rainfed and irrigated corn: What did we learn after 8 years? Soil Science Society of America Journal, 87:1174-1190. <a href="https://doi.org/10.1002/saj2.20566">https://doi.org/10.1002/saj2.20566</a></li><br /> <li>Koehler-Cole, K., Elmore, R.W., Blanco-Canqui, H., Francis, C.A., Shapiro, C.A., Proctor, C.A., Ruis, S. J., Irmak, S., Heeren, D. M. (2023). Cover crop planting practices determine their performance in the U.S. Corn Belt. Agronomy Journal, 115, 526&ndash; 543. <a href="https://doi.org/10.1002/agj2.21247">https://doi.org/10.1002/agj2.21247</a></li><br /> <li>Birru, G., Shiferaw, A., Tadesse, T., Schmer, M.R., Jin, V.L., Wardlow, B., Koehler‐Cole, K., Awada, T., Beebout, S., Tsegaye, T. and Kahrel, T. (2023). Simulated impacts of winter rye cover crop on continuous corn yield and soil parameters. Agronomy Journal, 115(3), pp.1114-1130. <a href="https://doi.org/10.1002/agj2.21291">https://doi.org/10.1002/agj2.21291</a></li><br /> <li>Birru, G., Shiferaw, A., Tadesse, T., Wardlow, B., Jin, V.L., Schmer, M.R., Awada, T., Kharel, T. and Iqbal, J. (2023). Cover crop performance under a changing climate in continuous corn system over Nebraska. <a href="https://doi.org/10.1002/jeq2.20526">https://doi.org/10.1002/jeq2.20526</a></li><br /> <li>Ruis, S.J., Blanco-Canqui, H., Jasa, P.J., Slater, G. and Ferguson, R.B. (2023). Increasing rye cover crop biomass production after corn residue removal to balance economics and soil health. Field Crops Research, 302, p.109076.</li><br /> <li>Krupek, F., Ruth, T., Redfearn, D., Hird, A., Basche, A. (2023). Reflections for enhancing participatory research and outreach from a multistakeholder soil health program. Journal of Soil and Water Conservation. <a href="https://doi.org/10.2489/jswc.2023.0908A">https://doi.org/10.2489/jswc.2023.0908A</a></li><br /> <li>Koehler-Cole, K., Basche, A., Thompson, L. and Rees, J. (2023). Comparing cover crop research in farmer-led and researcher-led experiments in the Western Corn Belt. Frontiers in Sustainable Food Systems. <a href="https://doi.org/10.3389/fsufs.2023.1064251">https://doi.org/10.3389/fsufs.2023.1064251</a></li><br /> <li>Stephens, T., Blanco‐Canqui, H., Knezevic, S., Rees, J., Koehler‐Cole, K. and Jhala, A.J. (2023). Impact of planting green on soil properties under irrigated no‐till soybean. Agrosystems, Geosciences &amp; Environment, 6(4), p.e20443.</li><br /> <li>Klopp, H.W., Blanco-Canqui, H., Sindelar, M., Jin, V.L., Schmer, M.R. and Ferguson, R.B. (2023). Did cover crop or animal manure ameliorate corn residue removal effects on soil mechanical properties after 10 years?. Journal of Agriculture and Food Research, 14, p.100802.</li><br /> <li>Blanco‐Canqui, H., Wilke, K., Holman, J., Creech, C.F., Obour, A.K. and Anderson, L. (2023). Grazing cover crops: How does it influence soils and crops?. Agronomy Journal, 115(6), pp.2801-2828.</li><br /> <li>Ruis, S.J., Blanco-Canqui, H., Jasa, P.J., Slater, G. and Ferguson, R.B. (2023). Increasing rye cover crop biomass production after corn residue removal to balance economics and soil health. Field Crops Research, 302, p.109076.</li><br /> <li>Preza Fontes, G., Christianson, L. E., &amp; Pittelkow, C. M. (2023). Investigating tradeoffs in nitrogen loss pathways using an environmental damage cost framework. Agricultural &amp; Environmental Letters, 8, e20103. <a href="https://doi.org/10.1002/ael2.20103">https://doi.org/10.1002/ael2.20103</a></li><br /> <li>Qin, Z., Guan, K., Zhou, W., Peng, B., Tang, J., Jin, Z., Grant, R., Hu, T., Villamil, M. B., DeLucia, E., Margenot, A. J., Umakant, M., Chen, Z., &amp; Coppess, J. (2023). Assessing long-term impacts of cover crops on soil organic carbon in the central US Midwestern agroecosystems. Global Change Biology, 29, 2572&ndash;2590. <a href="https://doi.org/10.1111/gcb.16632">https://doi.org/10.1111/gcb.16632</a></li><br /> <li>Ye, L., Guan, K., Qin, Z., Wang, S., Zhou, W., Peng, B., ... &amp; Schaefer, D. (2023). Improved quantification of cover crop biomass and ecosystem services through remote sensing-based model&ndash;data fusion. Environmental Research Letters, 18(9), 094018.</li><br /> <li>Wang, S., Guan, K., Zhang, C., Jiang, C., Zhou, Q., Li, K., ... &amp; Herzberger, L. (2023). Airborne hyperspectral imaging of cover crops through radiative transfer process-guided machine learning. Remote Sensing of Environment, 285, 113386.</li><br /> <li>Wang, S., Guan, K., Zhang, C., Zhou, Q., Wang, S., Wu, X., ... &amp; Ma, Z. (2023). Cross-scale sensing of field-level crop residue cover: Integrating field photos, airborne hyperspectral imaging, and satellite data. Remote Sensing of Environment, 285, 113366.</li><br /> <li>Deines, J. M., Guan, K., Lopez, B., Zhou, Q., White, C. S., Wang, S., &amp; Lobell, D. B. (2023). Recent cover crop adoption is associated with small maize and soybean yield losses in the United States. Global change biology, 29(3), 794-807.</li><br /> <li>Rogovska, P.L. O&rsquo;Brien, R.W. Malone, B.D. Emmett, J.L. Kovar, D.B. Jaynes, T.C. Kaspar, T.B. Moorman, P. Kyvergya. (2023). Long-term conservation practices reduce nitrate leaching while maintaining yields in tile-drained Midwestern soils. Agricultural Water Management 288 (1): 108481. doi: 10.1016/j.agwat.2023.108481</li><br /> <li>W. Malone, A. Radke, S. Herbstritt, H. Wu, Z. Qi, et al. (2023). Harvested winter rye energy cover crop: multiple benefits for North Central US. Environmental Research Letters 18:074009. doi: 10.1088/1748-9326/acd708</li><br /> <li>Plastino, A., F.M. Marcos, M.R. Parvej, M.A. Licht and A.E. Robertson. (2023). Does Grazing Winter Cereal Rye in Iowa, USA, Make It Profitable? Renewable Agriculture and Food Systems 38: E45. (doi:10.1017/S1742170523000388)</li><br /> <li>Acharya, J. and A.E. Robertson. (2023). Effect of allelochemicals from cereal rye cultivar and Pythium lutarium on corn growth and disease. PhytoFrontiers 3: 847-854 (doi.org/10.1094/PHYTOFR-11-22-0137-R)</li><br /> <li>Marcos, F.M., J.A. Acharya, R. Parvel, A.E. Robertson and M.A. Licht. (2023). Cereal rye cover crop seeding method, seeding rate, and termination timing effects corn development and seedling disease. Agronomy Journal 1-17 (doi/10.1002/agj2.21306)</li><br /> <li>Koirala, N., Barker, D. J.,Gesch, R. W., Heller, N. J., Hard, A. W., Wells, S. S.,Phippen, W. B., &amp; Lindsey, A. J. (2023). Seedpelleting and storage effects on germination ofPennycress (Thlaspi arvenseL.). Crop Science,63,3025&ndash;3036. <a href="https://doi.org/10.1002/csc2.21077">https://doi.org/10.1002/csc2.21077</a></li><br /> <li>Essman AI, Loux MM, Lindsey AJ, Dobbels AF. (2023). The effects of cereal rye cover crop seeding rate, termination timing, and herbicide inputs on weed control and soybean yield. Weed Science. 2023;71(4):387-394. doi:10.1017/wsc.2023.33</li><br /> <li>Yesuf Assen Mohammed, Russ W. Gesch, Samantha S. Wells, Nicholas J. Heller, Alexander J. Lindsey, Alexander W. Hard, Winthrop B. Phippen, Bethany Bedeker. (2023). Yield tradeoffs of early corn harvest to enhance pennycress establishment. Agron. Journal. <a href="https://doi.org/10.1002/agj2.21370">https://doi.org/10.1002/agj2.21370</a></li><br /> <li>Koirala N, Barker DJ, Gesch RW, Mohammed YA, Heller NJ, Hard AW, Wells SS, Phippen WB, Tas P and Lindsey AJ. (2023). Seed treatment affected establishment and yield in two pennycress lines. Front. Agron. 5:1205259. doi: 10.3389/fagro.2023.1205259</li><br /> <li>Trimarco, T.; Brummer, J.E.; Buchanan, C.; Ippolito, J.A. (2023). Tracking Soil Health Changes in a Management-Intensive Grazing Agroecosystem. Soil Syst., 7, 94. <a href="https://doi.org/10.3390/soilsystems7040094">https://doi.org/10.3390/soilsystems7040094</a></li><br /> <li>Manbir Rakkar, Jacob M. Jungers, Craig Sheaffer, Galen Bergquist, Julie Grossman, Fucui Li, Jessica LM Gutknecht. (2023). Soil health improvements from using a novel perennial grain during the transition to organic production. Agriculture, Ecosystems &amp; Environment, Volume 341. <a href="https://doi.org/10.1016/j.agee.2022.108164">https://doi.org/10.1016/j.agee.2022.108164</a></li><br /> <li>Culman, S., Pinto, P., Pugliese, J., Crews, T., DeHaan, L., Jungers, J., Larsen, J., Ryan, M., Schipanski, M., Sulc, M., Wayman, S., Wiedenhoeft, M., Stoltenber, D., &amp; Picasso, V. (2023). Forage harvest management impacts &ldquo;Kernza&rdquo; intermediate wheatgrass productivity across North America. Agronomy Journal, 115, 2424&ndash;2438. <a href="https://doi.org/10.1002/agj2.21402">https://doi.org/10.1002/agj2.21402</a></li><br /> <li>Liptzin, D., Rieke, E. L., Cappellazzi, S. B., Bean, G. M., Cope, M., Greub, K. L. H., Norris, C. E., Tracy, P. W., Aberle, E., Ashworth, A., Tavarez, O. B., Bary, A. I., Baumhardt, R. L., Gracia, A. B., Brainard, D. C., Brennan, J. R., Reyes, D. B., Bruhjell, D., Carlyle, C. N., &hellip; Honeycutt, C. W. (2023). An evaluation of nitrogen indicators for soil health in long-term agricultural experiments. Soil Science Society of America Journal, 87, 868&ndash;884. https://doi.org/10.1002/saj2.20558</li><br /> <li>Smith, M.E., Vico, G., Costa, A. et al. (2023). Increasing crop rotational diversity can enhance cereal yields. Commun Earth Environ 4, 89 <a href="https://doi.org/10.1038/s43247-023-00746-0">https://doi.org/10.1038/s43247-023-00746-0</a></li><br /> <li>Ashworth, A.J., L. Marshall, J.J. Volenec, M.D. Casler, M.T. Berti, E. van Santen, C.L. Williams, V. Gopakumar, J.L. Foster, T. Propst, V. Picasso, and J. Su. (2023). Framework to develop an open-source forage data network for improving primary productivity and enhancing system resiliency. Agronomy Journal <a href="https://doi.org/10.1002/agj2.21441">https://doi.org/10.1002/agj2.21441</a></li><br /> <li>Chao, W.S., J.V. Anderson, X. Li, R.W. Gesch, M.T. Berti, and D.P. Horvath. (2023). Overwintering camelina and canola/rapeseed show promise for improving integrated weed management approaches in the upper Midwestern U.S. Plants 12, 1329. <a href="https://doi.org/10.3390/plants12061329">https://doi.org/10.3390/plants12061329</a></li><br /> <li>Gesch, R.W, M.T. Berti, S. Weyers, and C. Eberle. (2023). Relay cropping as an adaptive strategy to cope with climate change. Agronomy Journal <a href="http://dx.doi.org/10.1002/agj2.21343">http://dx.doi.org/10.1002/agj2.21343</a></li><br /> <li>Nunes, J.J., N.J. Arneson, R.P. Dewerff, M. Ruark, S. Conley, D. Smith, R. Werle. (2023). Planting into a living cover crop alters preemergence herbicide dynamics and can reduce soybean yield. Weed Technology 37 (3), 226-235.</li><br /> <li>Malone, L.C., M.D. Ruark, C.J. Kucharik, T. Whitman, S.P. Conley. (2023). Linking soil health indicators to management history and soybean yield. Field Crops Research 297, 108951.</li><br /> <li>Augarten, A.J., L.C. Malone, S.G. Richardson, R.D. Jackson, M.A. Wattiaux, S.P. Conley, A.M. Radatz, E.T. Cooley, M.D. Ruark. (2023). Cropping systems with perennial vegetation and livestock integration promote soil health. Agricultural and Environmental Letters 8 (1), e20100.</li><br /> <li>Osterholz, W., M. Ruark, M. Renz, J. Grabber. (2023). Interseeded alfalfa N2 fixation and transfer to maize are reduced by N fertilizer. Nutrient Cycling in Agroecosystems 126 (1), 67-79.</li><br /> <li>Richardson, G.S., M.D. Ruark, T. Radatz, A. Radatz, E. Cooley, E.M. Silva, A.J. Augarten, J. Zhu, C.H. Zegler. (2023). The influence of inherent soil factors and agricultural management on soil organic matter. Ecosphere 14 (3), e4459.</li><br /> </ol>

Impact Statements

  1. Work of the MCCC and NCCC-211 members is having an impact on coordination of efforts more broadly across the country. Some of this is by active engagement with the PSA project and showcasing the work done by MCCC.
  2. Cover crops adoption continues to increase across the North Central U.S. in part due to the outreach and research efforts of representatives from NCCC-211 and MCCC. Cover crop efforts include research work and outreach on breaking adoption barriers, soil health, cropping systems, climate resilience, synchrony of N and P release from cover crop residue, water quality, forage quality, weed suppression, and cover crop economics.
  3. The NCCC-211 and MCCC continues to be integral in multi-state research projects such as the AFRI-Sustainable Agriculture Systems (SAS) program funded project “Enhancing the Sustainability of US Cropping Systems through Cover Crops and an Innovative Information and Technology Network.”
  4. There has been a steady increase in the number of activities and outcomes from past years in all three areas of the Land-grant mission: research, Extension, and Teaching. There are more stakeholders learning new cover crop knowledge, more students involved, more presentations, and more publications.
Back to top
Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.