NC1206: Antimicrobial Resistance

(Multistate Research Project)

Status: Active

SAES-422 Reports


  1. Johnson TA, Sylte MJ, Looft T. In-feed bacitracin methylene disalicylate modulates the turkey microbiota and metabolome in a dose-dependent manner [submitted to Scientific Reports]

  2. Carter HF, Wills RW, Scott MA, Thompson AC, Singer RS, Loy JD, Karisch BB, Epperson WB, and Woolums AR. Diversity of antimicrobial resistance phenotypes and genotypes of Mannheimia haemolytica isolates from bovine nasopharyngeal swabs. Front Vet Sci.  2022 May 11;9:883389. doi: 10.3389/fvets.2022.883389

  3. Bo Li, Xu Li, Bing Wang, and Tao Yan. A metagenomic approach for characterizing antibiotic resistance genes in specific bacterial populations: demonstration with Escherichia coli in cattle manure. Appl Environ Microbiol. 2022 Apr 12;88(7):e0255421. [NE]

  4. Donner L, Staley ZR, Petali J, Sangster J, Li X, Mathews W, Snow D, Howe A, Soupir M, Bartelt-Hunt S. The Human Health Implications of Antibiotic Resistance in Environmental Isolates from Two Nebraska Watersheds. Microbiol Spectr. 2022 Apr 27;10(2):e0208221. doi: 10.1128/spectrum.02082-21. Epub 2022 Mar 21. PMID: 35311538; PMCID: PMC9045274. [NE, IA]

  5. Mware NA, Hall MC, Rajendran S, Gilley JE, Schmidt AM, Bartelt-Hunt SL, Zhang Y, Li X. Resistome and mobilome in surface runoff from manured soil as affected by setback distance. J Hazard Mater. 2022 May 5;429:128278. doi: 10.1016/j.jhazmat.2022.128278. Epub 2022 Jan 14. PMID: 35065306. [NE]

  6. Kaniyamattam K, Hertl J, Tauer LW, and Grohn YT. (2022). Economics of reducing antibiotic usage for pathogen-specific clinical mastitis through genomic selection and disease management. Prev Vet Med. 2022 Jul;204:105642. doi: 10.1016/j.prevetmed.2022.105642. Epub 2022 Apr 6. PMID: 35430445. [NY]

  7. Verteramo Chiu, L. J., Tauer, L. W., & Gröhn, Y. T. (2022). Pricing efficiency in livestock auction markets: A two-tier frontier approach. Agricultural Economics,1–13. [NY]

  8. Verteramo Chiu, L.J., Tauer, L.W., Lhermie. G., Kaniyamattam, K., Gröhn Y.T. (2022) Benefits of Preconditioning Cattle under Stochastic Feedlot Performance. Journal of Agricultural and Applied Economics. 1–18 doi:10.1017/aae.2022.32 [NY]

  9. Barrett, J. R., Innes, G. K., Johnson, K. A., Lhermie, G., Ivanek, R., Greiner Safi, A., & Lansing, D. (2021). Consumer perceptions of antimicrobial use in animal husbandry: A scoping review. PLOS ONE16(12), e0261010


Appendix I: Publications

  1. Ruzante J.M., Harris B., Plummer P., Raimeri R.R., Loy J.D., Jacob M., Sahin O. and Krueder A.J. (2022) Surveillance of Antimicrobial Resistance in Veterinary Medicine in the United States: Current Efforts, Challenges, and Opportunities. Frontiers in Veterinary Science. DOI: 10.3389/fvets.2022.1068406

  2. Lewis, G.L., Fenton R.J., Moriyama E.N., Loy J.D., and Moxley R.A. (2023). Association of ISVsa3 with Multidrug Resistance in Salmonella enterica Isolates from Cattle (Bos taurus). Microorganisms.  Microorganisms 2023, 11, x.

  1. Bo Li, Min Ki Jeon, Xu Li, and Tao Yan.   Differential impacts of salinity on antibiotic resistance genes during cattle manure stockpiling are linked to mobility potential revealed by metagenomic sequencing.  Journal of Hazardous Materials, 445: 130590.

  2. Yangjunna Zhang, John W. Schmidt, Terrance M. Arthur, Tommy L. Wheeler, Qi Zhang, Bing Wang. A farm-to-fork quantitative microbial exposure assessment of β-lactam-resistant Escherichia coli among U.S. beef consumers. Microorganisms. 2022; 10(3): 661.

  3. Li Y, Fu S, Klein M, Wang H. 2023. Traditionally fermented foods still as a critical avenue impacting host gut antibiotic resistome | bioRxiv

  4. Wang H, Li Y, Fu 2023. Food safety and host health: hazards, risks, challenges and mitigation of antibiotic resistance. Food Safety Management in Practice. (Revision in review).

  5. Maddock K, Gefroh S, Burbick C. Beta-lactam resistance in veterinary beta-hemolytic Streptococcus species: Are we experiencing a public health or test method crisis? J Am Vet Med Assoc.2023 May 23; 1-4. doi: 10.2460/javma.23.03.0172. Online ahead of print.

  6. Sun R, Cummings KJ, Beukema A, Hinckley-Boltax AL, Korich JA, & Cazer CL. 2023. Veterinary Students’ Knowledge and Awareness of Antimicrobial Stewardship before and after Clinical Rotations. J Vet Med Educ e20220125

  7. Loy, JD., Clawson M.L., Adkins P.R.F., and Middleton J.R. (2023) Current and Emerging Diagnostic Approaches to Bacterial Diseases of Ruminants.  Veterinary Clinics of North America: Food Animal Practice.  Vol 39. 93-114

  8. Wynn E.L., Hille M.M., Loy J.D., Schuller G., Kuhn K.L., Dickey A.M., and Clawson M.L. (2022) Whole Genome Sequencing of Diverse Moraxella bovis Strains Reveals Two Genotypes with Different Genetic Determinants.  BMC Microbiology.  Vol 22 (258) DOI: 10.1186/s12866-022-02670-3

  9. Olson H.G., Loy J.D., Clawson M.L., Wynn E.L., and Hille M.W. (2022) Genotype classification of Moraxella bovis isolates using MALDI-TOF MS profiles.  Frontiers in Microbiology.  13:1057621 DOI: 10.3389/fmicb.2022.10576215

  10. Nickodem C, Arnold AN, Gehring KB, Gill JJ, Richeson JT, Samuelson KL, Scott HM, Smith JK, Taylor TM, Vinasco J, Norman KN. 2023. A Longitudinal Study on the Dynamics of Salmonella enterica Prevalence and Serovar Composition in Beef Cattle Feces and Lymph Nodes and Potential Contributing Sources from the Feedlot Environment. Appl Environ Microbiol. 89(4):e0003323. doi: 10.1128/aem.00033-23.

  11. Cull, C. A., V. K. Singu, B. J. Cull, K. F. Lechtenberg, G. Amachawadi, J. S. Schutz, and K. A. Bryan. 2022. Efficacy of two probiotic products fed daily to reduce Clostridium perfringens- based adverse health and performance effects in dairy calves. MDPI Antibiotics. 11:1513. DOI: 10.3390/antibiotics11111513

  12. Cull, C. A., V. K. Singu, B. J. Cull, K. F. Lechtenberg, G. Amachawadi, J. S. Schutz, and K. A. Bryan. 2022. Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-based feed additives in reducing Salmonella-associated health and performance effects in commercial beef calves. MDPI Antibiotics. 11:1328. DOI: DOI: 10.3390/antibiotics11101328.

  13. Cull, C. A., V. K. Singu, J. J. Bromm, K. F. Lechtenberg, G. Amachawadi, and B. J. Cull. 2023. Effects of core antigen bacterin with an immunostimulant on piglet health and performance outcomes when challenged with enteric and respiratory pathogens. Antibiotics. 12:599.

  14. Yadav, A., B. R. Singh, A. M. Pawde, P. Thomas, V. Singh, R. Singh, S. Singh, K. Ravichandran, H. Agri, V. Jayakumar, and R. G. Amachawadi*. 2023. Draft genome sequence of a Pasteurella multocida strain isolated from a Spotted Deer (Axis axis) in India. Microbiology Resource Announcements.

  15. Duarte, M. E., C. H. Stahl, and W. Kim. 2023. Intestinal oxidative damages by F18+ Escherichia coli and its amelioration with an antibacterial bacitracin fed to nursery pigs. Antioxidants (in press) [NC, MD]

  16. Moita, V. H., and W. Kim. 2023. Efficacy of a bacterial 6-phytase supplemented beyond traditional dose levels on jejunal mucosa-associated microbiota, ileal nutrient digestibility, bone and intestinal health, and growth performance of nursery pigs. Journal of Animal Science 101:skad134. [NC]

  17. Choi, H., Y. Chen, F. Longo, and W. Kim. 2023. Comparative effects of benzoic acid and sodium benzoate in diets for nursery pigs on growth performance and acidification of digesta and urine. Journal of Animal Science 101:skad116. [NC, Brazil]

  18. Deng, Z., M. E. Duarte, Y. Kim, Y. Hwang, and S. W. Kim. 2023. Comparative effects of soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal replacing animal protein supplements in feeds on growth performance and intestinal health of nursery pigs. Journal of Animal Science and Biotechnology (in press) [NC, Korea]

  19. Vanessa Lagos, L., J. C. Woodworth, W. Kim, and H. H. Stein. 2023. Short communication: Commercial diets for pigs in the United States contain more calcium than formulated. Journal of Animal Science 100:(in press) [IL, NC, KS]

  20. Jang, K. B., V. H. C. Moita, N. Martinez, A. Sokale, and W. Kim. 2023. Efficacy of zinc glycinate reducing zinc oxide on intestinal health and growth of nursery pigs challenged with F18+ Escherichia coli. Journal of Animal Science 101:skad035. [NC]

  21. Jang, K. B., and W. Kim. 2022. Evaluation of standardized ileal digestibility of amino acids in fermented soybean meal for nursery pigs using direct and difference procedures. Animal Bioscience 36:275-283. [NC]

  22. Rocha, G. C., M. E. Duarte, and W. Kim. 2022. Advances, implications, and limitations of low crude protein diets in pig production. Animals12:3478 [NC, Brazil]

  23. Cheng, Y. C., H. L. Lee, Y. Hwang, and W. Kim. 2022. The effects of SID His to Lys ratio on growth performance, intestinal health, and mobilization of histidine-containing proteins in pigs at 7 to 11 kg body weight. Journal of Animal Science 100:skac396 [NC, Korea]

  24. Moita, V. H. C., and W. Kim. 2022. Nutritional and functional roles of phytase and xylanase enhancing the intestinal health of nursery pigs and broiler chickens. Animals 12:3322 [NC]

  25. Cheng, Y. C., and W. Kim. 2022. Use of microorganisms as nutritional and functional feedstuffs for nursery pigs and broilers. Animals 12:3141 [NC]

  26. Duarte, M. E., and W. Kim. 2022. Phytobiotics from oregano extracts enhance intestinal health and growth performance of pigs. Antioxidants 11:2066 [NC]

  27. Boston, T. E., F. Wang, X. Lin, Leonard, S. W. Kim, D. McKilligan, V. Fellner, and J. Odle. 2022. Gruel creep feeding accelerates growth and alters intestinal health of young pigs. Animals 12:2408. [NC]

  28. Niu, Q., G. Pu, L. Fan, C. Gao, T. Lan, C. Liu, T. Du, W. Kim, P. Niu, Z. Zhang, P. Li, and R. Huang. 2022. Identification of gut microbiota affecting fiber digestibility in pigs. Current Issues in Molecular Biology 44:4557-4569 [NC, China]

  29. Deng, Z., M. E. Duarte, K. B. Jang, and W. Kim. 2022. Soy protein concentrate replacing animal protein supplements and its impacts on intestinal health, mucosa-associated microbiota, and growth performance of nursery pigs. Journal of Animal Science 100:skac255. [NC]

  30. Xu, X., M. E. Duarte, and W. Kim. 2022. Postbiotics effects of Lactobacillus fermentate on intestinal health, mucosa-associated microbiota, and growth efficiency of nursery pigs challenged with F18+ Escherichia coli. Journal of Animal Science 100:skac210. [NC]

  31. Moita, V.H.C., M.E. Duarte, and S.W. Kim. 2022. Functional roles of xylanase enhancing intestinal health and growth performance of nursery pigs by reducing the digesta viscosity and modulating the mucosa-associated microbiota in the jejunum. Journal of Animal Science 100:skac116. [NC]

  32. Holanda, D. M., and W. Kim. 2022. Impacts of weaning weights and mycotoxin challenges on jejunal mucosa-associated microbiota, intestinal and systemic health, and growth performance of nursery pigs. Journal of Animal Science and Biotechnology 13:43. [NC]

  33. Cheng, Y. C., M. E. Duarte, and W. Kim. 2022. Effects of Yarrowia lipolytica supplementation on growth performance, intestinal health, and apparent ileal digestibility of diets fed to nursery pigs. Animal Bioscience 35:605-613. [NC]

  34. Duarte, M. E., and W. Kim. 2022. Intestinal microbiota and its interaction to intestinal health in nursery pigs. Animal Nutrition 8:169-184. [NC]

  35. Jang, K. B., and W. Kim. 2022. Role of milk carbohydrates in intestinal health of nursery: a review. Journal of Animal Science and Biotechnology 13:6. [NC]

  36. Ganda E, Chakrabarti A, Sardi MI, Tench M, Kozlowicz BK, Norton SA, Warren LK, Khafipour E. Saccharomyces cerevisiae fermentation product improves robustness of equine gut microbiome upon stress. Front Vet Sci. 2023 Feb 24;10:1134092. doi: 10.3389/fvets.2023.1134092. PMID: 36908513; PMCID: PMC9998945.

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.