
NC1203: Lipids In Plants: Improving and Developing Sustainability of Crops ("LIPIDS of Crops")
(Multistate Research Project)
Status: Active
SAES-422 Reports
09/30/2022
10/16/2023
08/30/2024
Publications
Abdullah, H.M., Pang, N., Chilcoat, B., Shachar-Hill, Y., Schnell, D.J., and Dhankher, O.P.. Overexpression of the Phosphatidylcholine: Diacylglycerol Cholinephosphotransferase (PDCT) Gene Increases Carbon Flux Towards Triacylglycerol (TAG) Synthesis in Camelina sativa Seeds. Plant Physiology & Biochemistry, 208: 108470 (2024). https://doi.org/10.1016/j.plaphy.2024.108470
Alexander, L.E., Winkelman, D., Stenback, K.E., Lane, M., Campbell, K.R., Trost, E., Flyckt, K., Schelling, M.A., Rizhsky, L., Yandeau-Nelson, M.D., Nikolau, B.J. 2024. The impact of GLOSSY2 and GLOSSY2-LIKE BAHD-proteins in affecting the product profile of the maize fatty acid elongase. Front Plant Sci. 15: 1403779. doi: 10.3389/fpls.2024.1403779
Ahmad, B., Lerma-Reyes, R., Mukherjee, T., Nguyen, H.V., Weber, A.L., Cummings, E.E., Schulze, W.X., Comer, J.R., Schrick, K. 2024. Nuclear localization of HD-Zip transcription factor GLABRA2 is driven by Importin alpha. J. Exp. Bot. erae326. doi:10.1093/jxb/erae326.
Azeez A, Bates PD (2024) Self-incompatibility based functional genomics for rapid phenotypic characterization of seed metabolism genes. Plant Biotechnology Journal. doi:https://doi.org/10.1111/pbi.14383
Chen, K., Bhunia, R.K., Wendt, M.M., Campidilli, G., McNinch, C., Hassan, A., Li, L., Nikolau, B.J., Yandeau-Nelson, M.D. 2024a. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. J Exp Bot. erae311. doi: 10.1093/jxb/erae311.
Chen, K., Alexander, L.E., Mahgoub, U., Okazaki, Y., Higashi, Y., Perera, A.M., Showman, L.J., Loneman, D., Dennison, T.S., Lopez, M., Claussen, R., Peddicord, L., Saito, K., Lauter, N., Dorman, K.S., Nikolau, B.J., Yandeau-Nelson, M.D. 2024b. Dynamic relationships among pathways producing hydrocarbons and fatty acids of maize silk cuticular waxes. Plant Physiol. 195(3): 2234-2255. doi: 10.1093/plphys/kiae150
Chen M, Wang S, Zhang Y, Fang D, Thelen JJ. (2023) Plastid Phosphatidylglycerol Homeostasis Influences Polar Lipid Synthesis in Arabidopsis. Metabolites. 13:318.
Esterhuizen, L., Ampimah, N., Yandeau-Nelson, M.D., Nikolau, B.J., Sparks, E.E., Saha, R. AraRoot-A comprehensive genome-scale metabolic model for the Arabidopsis root system. Preprint in bioRxiv; doi: 10.1101/2024.07.28.605515
Hoffmann-Benning, S. and Simon-Plas, F. (2024). Editorial: Lipid signaling in plant physiology. Plant Science 334. https://doi.org/10.1016/j.plantsci.2024.112088
Holtsclaw RE, Mahmud S, Koo AJ. (2024) Identification and characterization of GLYCEROLIPASE A1 for wound-triggered JA biosynthesis in Nicotiana benthamiana leaves. Plant Mol Biol. 114:4 doi: 10.1007/s11103-023-01408-7.
Johnson BS, Allen DK, Bates PD (2024) Triacylglycerol stability limits futile cycles and inhibition of carbon capture in oil-accumulating leaves. Plant Physiology. doi: 10.1093/plphys/kiae121
Kenchanmane Raju SK, Zhang Y, Mahboub S, Ngu DW, Qiu Y, Harmon FG, Schnable JC, Roston RL. Rhythmic lipid and gene expression responses to chilling in panicoid grasses. Journal of Experimental Botany. 2024 May 29:erae247.
Kim, P., S. Mahboob, H.T. Nguyen, S. Eastman*, O. Meyer*, M. Sousek, R.E. Gaussoin, J.L. Brungardt, T.A. Jackson-Ziems, R. Roston, J.A. Alfano, T.E. Clemente, and M.Guo 2024. Characterization of soybean events with enhanced expression of the microtubule-associated protein 65-1 (MAP65-1). Mol. Plant-Microbe Int. 37:62-71. DOI: https://doi.org/10.1094/MPMI-09-23-0134-R
Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, and Koo AJ. Increasing oil production in leaves by engineering plastidial phospholipase A1. Under review.
Kulke, M., Kurtz, E., Boren, D., Olson, D. M., Koenig, A. M., Hoffmann-Benning, S., & Vermaas, J. V. (2024). PLAT Domain Protein 1 (PLAT1/PLAFP) Binds to the Arabidopsis thaliana Plasma Membrane and Inserts a Lipid. Plant science 338. https://doi.org/10.1016/j.plantsci.2023.111900
Lee, Y.J., Hapuarachchige, P., Larson, E., Le, N.goc; Forsman, Trevor, 2024, Visualizing 13C-labeled Metabolites in Maize Root Tips with Mass Spectrometry Imaging, J. Am. Soc. Mass Spectrom. 35, 7. https://doi.org/10.1021/jasms.4c00042
Li-Beisson Y, Roston R. Plant and Algal Lipids: In All Their States and On All Scales. Plant and Cell Physiology. 2024 May, pcae061.
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. J Hazard Mater. 2024 May 5;469:133951. doi: 10.1016/j.jhazmat.2024.133951.
Na, S., Lee, Y.J., 2024, Mass Spectrometry Imaging of Arabidopsis thaliana with in vivo D2O Labeling, Front. Plant Sci. 15:1379299, https://doi.org/10.3389/fpls.2024.1379299.
Neumann N, Harman M, Kuhlman A, Durrett TP. 2024. Arabidopsis diacylglycerol acyltransferase1 mutants require fatty acid desaturation for normal seed development. Plant J. 119: 916-926. doi: 10.1111/tpj.16805
Neumann N, Fei T, Wang T, Durrett TP. 2023. Defining the physical properties of blends of acetyl-triacylglycerols derived from transgenic oil seeds. J Am Oil Chem Soc. 101(2): 197–204. doi: 10.1002/aocs.12746
Nguyen D, Groth N, Mondloch K, Cahoon EB, Jones K, Busta L (2024) Project ChemicalBlooms: Collaborating with citizen scientists to survey the chemical diversity and phylogenetic distribution of plant epicuticular wax blooms. 8 (5), e588 https://doi.org/10.1002/pld3.588
Osinuga A, Solís AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R (2024) Deciphering Sphingolipid Biosynthesis Dynamics in Arabidopsis thaliana cell cultures: Quantitative Analysis Amidst Data Variability. iScience DOI: https://doi.org/10.1016/j.isci.2024.110675
Parchuri P, Bhandari S, Azeez A, Chen G, Johnson K, Shockey J, Smertenko A, Bates PD (2024) Identification of triacylglycerol remodeling mechanism to synthesize unusual fatty acid containing oils. Nature Communications 15 (1):3547. doi:10.1038/s41467-024-47995-x
Qin, P.,Chen, P.,Zhou, Y.,Zhang, W.,Zhang, Y.,Xu, J.,Gan, L.,Liu, Y.,Romer, J.,Dormann, P.,Cahoon, E. B. & Zhang, C. (2024) Vitamin E biofortification: enhancement of seed tocopherol concentrations by altered chlorophyll metabolism, Front Plant Sci. 15, 1344095 [10.3389/fpls.2024.1344095].
Quach, T., Nguyen, H., Meyer, O., S.J. Sato, Clemente, T.E., and Guo, M. 2023. Introduction of genome editing reagents and genotyping of derived edited alleles in soybean (Glycine max (L.) Merr.) Plant Genome Engineering: Methods & Protocols https://doi.org/10.1007/978-1-0716-3131-7_17
Quach, T.N., Sato, S.J., Behrens, M.R., Black, P.N., DiRusso, C.C., Cerutti, H.D. and Clemente, T.E.. 2023. A facile Agrobacterium-mediated transformation method for the model unicellular green algae Chlamydomonas reinhardtii. In Vitro Cellular & Mol Biol.-Plant 59:671-683.
Schrick, K., Ahmad, B., Nguyen, H.V. 2023. HD-Zip IV transcription factors: Drivers of epidermal cell fate integrate metabolic signals. Curr Opin Plant Biol. 75:e102407. doi:10.1016/j.pbi.2023.102417
Shomo ZD, Mahboub S, Vanviratikul H, McCormick M, Tulyananda T, Roston RL, Warakanont J. All members of the Arabidopsis DGAT and PDAT acyltransferase families operate during high and low temperatures. Plant Physiology. 2024 May;195(1):685-97.
Shomo ZD, Li F, Smith CN, Edmonds SR, Roston RL. From Sensing to Acclimation: The Role of Membrane Lipid Remodeling in Plant Responses to Low Temperatures. Plant Physiology. 2024 Jul 19:kiae382.
Singh, G., Le, H., Ablordeppey, K., Long, S., Minocha, R., and Dhankher, O.P.. Overexpression of gamma-Glutamyl Cyclotransferases 2;1 (CsGGCT2;1) Reduces Arsenic Toxicity and Accumulation in Camelina sativa (L.). Plant Cell Reports, 43:14 (2024). https://doi.org/10.1007/s00299-023-03091-w
Spivey WW, Rustgi S, Welti R, Roth MR, Burow MD, Bridges WC Jr, Narayanan S. Lipid modulation contributes to heat stress adaptation in peanut. Front Plant Sci. 2023 Dec 18;14:1299371. doi: 10.3389/fpls.2023.1299371.
Surber SM, Thien Thao NP, Smith CN, Shomo ZD, Barnes AC, Roston RL. Exploring cotton SFR2’s conundrum in response to cold stress. Plant Signaling & Behavior. 2024 Dec 31;19(1):2362518.
Tat, V.T., Lee, Y.J., 2024, Spatiotemporal Study of Galactolipid Biosynthesis in Duckweed with Mass Spectrometry Imaging and in vivo Isotope Labeling, Plant and Cell Physiology, 65(6), 986–998. https://doi.org/10.1093/pcp/pcae032
Villalobos, J. A.,Cahoon, R. E.,Cahoon, E. B. & Wallace, I. S. (2024) Glucosylceramides impact cellulose deposition and cellulose synthase complex motility in Arabidopsis, Glycobiology. 34 [10.1093/glycob/cwae035].
Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. (2022) Overexpression of pea α-carboxyltransferase in Arabidopsis and Camelina increases fatty acid synthesis leading to improved seed oil content. Plant J. 110:1035-1046.
Wang S, Blume RY, Zhou ZW, Nazarenus TJ, Blume YB, Cahoon EB*, Chen L*, Liang G* (2024) Chromosome-level assembly and analysis of Camelina neglecta – a novel diploid model for camelina biotechnology research. Biotechnology for Biofuels and Bioproducts 17 (1), 17 (*Co-corresponding authors) https://doi.org/10.1186/s13068-024-02466-9
Vadde, B.V.L., Russell, N.J., Bagde, S.R., Askey, B., Saint-Antoine, M.M., Brownfield, B.A., Mughal, S., Apprill, L.E., Khosla, A., Clark, F.K., Schwarz, E.M., Alseekh, S., Fernie, A.R., Singh, A., Schrick, K., Fromme, J.C., Skirycz, A., Formosa-Jordan, P., Roeder, A.H.K. 2024. The transcription factor ATML1 maintains giant cell identity by inducing synthesis of its own long-chain fatty acid-containing ligands. Preprint in bioRxiv; doi:10.1101/2024.03.14.584694.
Wojciechowska, I., Mukherjee, T., Knox-Brown, P., Hu, X., Khosla, A., Subedi, B., Ahmad, B., Mathews, G.L., Panagakis, A.A., Thompson, K.A., Peery, S.T., Szlachetko, J., Thalhammer, A., Hincha, D.K., Skirycz, A., Schrick, K. 2024. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. New Phytol. (published online 7-1-2024). doi:10:1111/nph.19917
Xu, C.,Shaw, T.,Choppararu, S. A.,Lu, Y.,Farooq, S. N.,Qin, Y.,Hudson, M.,Weekley, B.,Fisher, M.,He, F.,Da Silva Nascimento, J. R.,Wergeles, N.,Joshi, T.,Bates, P. D.,Koo, A. J.,Allen, D. K.,Cahoon, E. B.,Thelen, J. J. & Xu, D. (2024) FatPlants: a comprehensive information system for lipid-related genes and metabolic pathways in plants, Database (Oxford). 2024 [10.1093/database/baae074].
10/18/2025
- Ahmad, B., Lerma-Reyes, R., Mukherjee, T., Nguyen, H.V., Weber, A.L., Cummings, E.E., Schulze, W.X., Comer, J.R., Schrick, K. 2024. Nuclear localization of HD-Zip transcription factor GLABRA2 is driven by Importin α. J Exp Bot. 75(20):6441-6461. doi:10.1093/jxb/erae326.
- Garneau MG, Parchuri P, Zander N, Bates PD (2025) Rapid quantification of whole seed fatty acid amount, composition, and shape phenotypes from diverse oilseed species with large differences in seed size. Plant Methods 21: 67
- McGuire ST, Shockey J, Bates PD (2025) The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation. New Phytologist 245: 263-281
- Kataya A, Nascimento JRS, Xu C, Garneau MG, Koley S, Kimberlin A, Mukherjee T, Mooney BP, Xu D, Bates PD, Allen DK, Koo AJ, Thelen JJ (2025) Comparative Omics Reveals Unanticipated Metabolic Rearrangements in a High-Oil Mutant of Plastid Acetyl-CoA Carboxylase. Journal of Proteome Research 24: 2675-2688
- Kim, H.,Liu, L.,Han, L.,Park, K.,Kim, H. J.,Nguyen, T.,Nazarenus, T. J.,Cahoon, R. E.,Haslam, R. P.,Ciftci, O.,Napier, J. A. & Cahoon, E. B. (2025) Oilseed-based metabolic engineering of astaxanthin and related ketocarotenoids using a plant-derived pathway: Lab-to-field-to-application, Plant Biotechnology Journal. 23, 3451-3464 [https://doi.org/10.1111/pbi.70148].
- Park, K.,Quach, T.,Clark, T. J.,Kim, H.,Zhang, T.,Wang, M.,Guo, M.,Sato, S.,Nazarenus, T. J.,Blume, R.,Blume, Y.,Zhang, C.,Moose, S. P.,Swaminathan, K.,Schwender, J.,Clemente, T. E. & Cahoon, E. B. (2025) Development of vegetative oil sorghum: From lab-to-field, Plant Biotechnology Journal. 23, 660-673 [https://doi.org/10.1111/pbi.14527].
- Koley S, Jyoti P, Lingwan M, Wei M, Xu C, Chu KL, Williams RB, Koo AJ, Thelen JJ, Xu D, Allen DK (2025) Persistent fatty acid catabolism during plant oil synthesis. Cell Reports 44(4):115492 (2025)
- Rhee, S. Y.,Anstett, D. N.,Cahoon, E. B.,Covarrubias-Robles, A. A.,Danquah, E.,Dudareva, N.,Ezura, H.,Gilbert, K. J.,Gutiérrez, R. A.,Heck, M.,Lowry, D. B.,Mittler, R.,Muday, G.,Mukankusi, C.,Nelson, A. D. L.,Restrepo, S.,Rouached, H.,Seki, M.,Walker, B.,Way, D. & Weber, A. P. M. (2025) Resilient plants, sustainable future, Trends in Plant Science. 30, 382-388 [10.1016/j.tplants.2024.11.001].
- Blume, R. Y.,Hotsuliak, V. Y.,Nazarenus, T. J.,Cahoon, E. B. & Blume, Y. B. (2024) Genome-wide identification and diversity of FAD2, FAD3 and FAE1 genes in terms of biotechnological importance in Camelina species, BMC Biotechnology. 24, 107 [10.1186/s12896-024-00936-4].
- Colak N, Kurt-Celebi A, Roth MR, Welti R, Torun H, Ayaz FA. (2025) Salicylic acid priming before cadmium exposure increases wheat growth but does not uniformly reverse cadmium effects on membrane glycerolipids. Plant Biol (Stuttg). 27(1):79-91. doi: 10.1111/plb.13736.
- Dong, J., Croslow, S. W., Lane, S. T., Castro, D. C.,Blanford, J., Zhou, S.,Park, K., Burgess, S., Root, M., Cahoon, E. B., Shanklin, J., Sweedler, J. V., Zhao, H. & Hudson, M. E. (2025) Enhancing lipid production in plant cells through automated high-throughput genome engineering and phenotyping, The Plant Cell. 37 [10.1093/plcell/koaf026].
- Murphy KM, Johnson BS, Harmon C, Gutierrez J, Sheng H, Kenney S, Gutierrez-Ortega K, Wickramanayake J, Fischer A, Brown A, Czymmek KJ, Bates PD, Allen DK, Gehan MA (2025) Excessive leaf oil modulates the plant abiotic stress response via reduced stomatal aperture in tobacco (Nicotiana tabacum). The Plant Journal 121: e70067
- Gautam, B., Kim, H., Wang, C., Park, K., Cahoon, E. B. & Sedbrook, J. C. (2025) Meeting Liquid Biofuel and Bioproduct Goals: Biotechnological Design of the Intermediate Oilseeds Pennycress and Camelina, and Beyond, Journal of Experimental Botany [10.1093/jxb/eraf415].
- Bates PD, Shockey J (2025) Towards rational control of seed oil composition: dissecting cellular organization and flux control of lipid metabolism. Plant Physiol 197: kiae658. DOI: 1093/plphys/kiae658
- Cahoon, E. B.,Kim, P.,Xie, T.,González Solis, A.,Han, G.,Gong, X. & Dunn, T. M. (2024) Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses, Plant Physiology. 197 [10.1093/plphys/kiae460].
- Johnson BS, Allen DK, Bates PD (2025) Triacylglycerol stability limits futile cycles and inhibition of carbon capture in oil-accumulating leaves. Plant Physiology 197: kiae121. doi: 10.1093/plphys/kiae121
- Johnson RLB, Tat VT, Lee YJ (2025) Unsupervised Machine Learning for Mass Spectrometry Imaging Data Analysis with in vivo Isotope Labeling, Analyst, DOI: 10.1039/D5AN00649J
- Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, Koo AJ. (2025) Increasing oil production in leaves by engineering plastidial phospholipase A1. Plant J. 121:e70088. doi: 10.1111/tpj.70088.
- Rensner JJ, Kim H, Park K, Cahoon EB, Lee YJ (2025), OzMALDI: A Gas-Phase, In-Source Ozonolysis Reaction for Efficient Double-Bond Assignment in Mass Spectrometry Imaging with Matrix-Assisted Laser Desorption/Ionization, Anal. Chem. 97(13), 7447-7455. Doi: 10.1021/acs.analchem.5c00284
- Alkotami L, White DJ, Schuler KM, Esfahanian M, Jarvis BA, Paulson AE, Koley S, Kang J, Lu C, Allen DK, Lee Y-J, Sedbrook JC, Durrett TP. (2024). Targeted engineering of camelina and pennycress seeds for ultrahigh accumulation of acetyl-TAG. Proc Natl Acad Sci U S A. 121:e2412542121. doi: doi:10.1073/pnas.2412542121
- Li J, Yao S, Jonas M, Kim SC, Wang X. Non-specific phospholipase C4 improves phosphorus remobilization from old to young leaves in Camelina. Plant, Cell & Environment 2025 doi: 10.1111/pce.15122. PMID: 39253961.
- Yang B, Fan R, Yao S, Lou H, Li J, Guo L, Wang X. Non-specific phospholipase Cs and their potential for crop improvement. J Exp Bot. 2025; eraf334, https://doi.org/10.1093/jxb/eraf334
- Kosma DK, Graça J, Molina I (2024) Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. Plant Physiology 197: kiae653 https://doi.org/10.1093/plphys/kiae653
- Li S, Zhang X, Huang H, Yin M, Jenks MA, Kosma DK, Yang P, Yang X, Zhao H, Lü S (2025) Deciphering the core shunt mechanism in Arabidopsis cuticular wax biosynthesis and its role in plant environmental adaptation. Nature Plants 11: 165–175 https://doi.org/10.1038/s41477-024-01892-9
- Ojeda-Rivera JO, Barnes AC, Ainsworth EA, Angelovici R, Basso B, Brindisi LJ, Brooks MD, Busch W, Buttelmann GL, Castellano MJ, Chen J, Costich DE, de Leon N, Emmett BD, Ertl D, Fitzsimmons SL, Flint-Garcia SA, Gore MA, Guan K, Hale CO, Herr S, Hirsch CN, Holding DH, Holland JB, Hsu S-K, Hua J, Hufford MB, Kaeppler SM, Leary EN, Liu Z-Y, Mahama AA, McCubbin TJ, Messina CD, Michael TP, Miller SJ, Murray SC, Okumoto S, Oren E, Park AN, Piñeros MA, Pugh NA, Raboy V, Rellán-Álvarez R, Romay MC, Rooney T, Roston RL, Sawers RJH, Schnable JC, Schulz AJ, Scott MP, Springer NM, Washburn JD, Zambrano MA, Zhai J, Zou J, Buckler ES. 2025. Designing a nitrogen-efficient cold-tolerant maize for modern agricultural systems, The Plant Cell, Volume 37, Issue 7, koaf139, https://doi.org/10.1093/plcell/koaf139
- Richter M, Segal LM, Rocha RO, Rokaya N, Rodrigues de Queiroz A, Riekof WR, Roston RL, Wilson RA. 2024. “Membrane fluidity control by the Magnaporthe oryzae acyl-CoA binding protein sets the thermal range for host rice cell colonization” PLOS Pathogens. 20(11), e1012738. doi:10.1371/journal.ppat.1012738
- Wojciechowska, I., Mukherjee, T., Knox-Brown, P., Hu, X., Khosla, A., Subedi, B., Ahmad, B., Mathews, G.L., Panagakis, A.A., Thompson, K.A., Peery, S.T., Szlachetko, J., Thalhammer, A., Hincha, D.K., Skirycz, A., Schrick, K. 2024. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. New Phytol. 244(4):1498-1518. doi:10:1111/nph.19917
- Esterhuizen L, Ampimah N, Yandeau-Nelson MD, Nikolau BJ, Sparks EE, Saha R. (2025) AraRoot – A comprehensive genome-scale metabolic model for the Arabidopsis root system. In silico Plants. doi: 10.1093/insilicoplants/diaf003.
- Singh G, Aftab SO, and Dhankher OP. (2025). Arabidopsis thaliana Oxoprolinase 1 (AtOXP1) maintains glutamate homeostasis and promotes arsenite and mercury tolerance and reduced accumulation in plants. The Plant Journal, 122 (2): e70154. doi: 10.1111/tpj.70154
- Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, and Dhankher OP. (2024) Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal/loids tolerance and accumulation in Crambe abyssinica. Plant Cell Reports 43:270. https://doi.org/10.1007/s00299-024-03351-3
- Toyinbo J.O, Saripalli G., Ingole H.P., Jones Z.T., Naveed S., Noh E#., Narayanan S., Rustgi S. 2025. Impact of mutations in soybean oleate and linoleate desaturase genes on the germinability of seed from heat-stressed plants at the anthesis stage. Crops. 5, 2.