NC1203: Lipids In Plants: Improving and Developing Sustainability of Crops ("LIPIDS of Crops")

(Multistate Research Project)

Status: Active

SAES-422 Reports

09/30/2022

10/16/2023

08/30/2024

Publications


Abdullah, H.M., Pang, N.,  Chilcoat, B., Shachar-Hill, Y., Schnell, D.J., and Dhankher, O.P.. Overexpression of the Phosphatidylcholine: Diacylglycerol Cholinephosphotransferase (PDCT) Gene Increases Carbon Flux Towards Triacylglycerol (TAG) Synthesis in Camelina sativa Seeds. Plant Physiology & Biochemistry, 208: 108470 (2024). https://doi.org/10.1016/j.plaphy.2024.108470


Alexander, L.E., Winkelman, D., Stenback, K.E., Lane, M., Campbell, K.R., Trost, E., Flyckt, K., Schelling, M.A., Rizhsky, L., Yandeau-Nelson, M.D., Nikolau, B.J. 2024. The impact of GLOSSY2 and GLOSSY2-LIKE BAHD-proteins in affecting the product profile of the maize fatty acid elongase. Front Plant Sci. 15: 1403779. doi: 10.3389/fpls.2024.1403779


Ahmad, B., Lerma-Reyes, R., Mukherjee, T., Nguyen, H.V., Weber, A.L., Cummings, E.E., Schulze, W.X., Comer, J.R., Schrick, K. 2024. Nuclear localization of HD-Zip transcription factor GLABRA2 is driven by Importin alpha. J. Exp. Bot. erae326. doi:10.1093/jxb/erae326.


Azeez A, Bates PD (2024) Self-incompatibility based functional genomics for rapid phenotypic characterization of seed metabolism genes. Plant Biotechnology Journal. doi:https://doi.org/10.1111/pbi.14383 


Chen, K., Bhunia, R.K., Wendt, M.M., Campidilli, G., McNinch, C., Hassan, A., Li, L., Nikolau, B.J., Yandeau-Nelson, M.D. 2024a. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. J Exp Bot.  erae311. doi: 10.1093/jxb/erae311.


Chen, K., Alexander, L.E., Mahgoub, U., Okazaki, Y., Higashi, Y., Perera, A.M., Showman, L.J., Loneman, D., Dennison, T.S., Lopez, M., Claussen, R., Peddicord, L., Saito, K., Lauter, N., Dorman, K.S., Nikolau, B.J., Yandeau-Nelson, M.D. 2024b. Dynamic relationships among pathways producing hydrocarbons and fatty acids of maize silk cuticular waxes. Plant Physiol. 195(3): 2234-2255. doi: 10.1093/plphys/kiae150


Chen M, Wang S, Zhang Y, Fang D, Thelen JJ. (2023) Plastid Phosphatidylglycerol Homeostasis Influences Polar Lipid Synthesis in Arabidopsis. Metabolites. 13:318.


Esterhuizen, L., Ampimah, N., Yandeau-Nelson, M.D., Nikolau, B.J., Sparks, E.E., Saha, R. AraRoot-A comprehensive genome-scale metabolic model for the Arabidopsis root system. Preprint in bioRxiv; doi: 10.1101/2024.07.28.605515


Hoffmann-Benning, S. and Simon-Plas, F. (2024). Editorial: Lipid signaling in plant physiology. Plant Science 334. https://doi.org/10.1016/j.plantsci.2024.112088


Holtsclaw RE, Mahmud S, Koo AJ. (2024) Identification and characterization of GLYCEROLIPASE A1 for wound-triggered JA biosynthesis in Nicotiana benthamiana leaves. Plant Mol Biol. 114:4 doi: 10.1007/s11103-023-01408-7.


Johnson BS, Allen DK, Bates PD (2024) Triacylglycerol stability limits futile cycles and inhibition of carbon capture in oil-accumulating leaves. Plant Physiology. doi: 10.1093/plphys/kiae121 


Kenchanmane Raju SK, Zhang Y, Mahboub S, Ngu DW, Qiu Y, Harmon FG, Schnable JC, Roston RL. Rhythmic lipid and gene expression responses to chilling in panicoid grasses. Journal of Experimental Botany. 2024 May 29:erae247.


Kim, P., S. Mahboob, H.T. Nguyen, S. Eastman*, O. Meyer*, M. Sousek, R.E. Gaussoin, J.L. Brungardt, T.A. Jackson-Ziems, R. Roston, J.A. Alfano, T.E. Clemente, and M.Guo 2024. Characterization of soybean events with enhanced expression of the microtubule-associated protein 65-1 (MAP65-1). Mol. Plant-Microbe Int. 37:62-71. DOI: https://doi.org/10.1094/MPMI-09-23-0134-R


Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, and Koo AJ. Increasing oil production in leaves by engineering plastidial phospholipase A1. Under review.


Kulke, M., Kurtz, E., Boren, D., Olson, D. M., Koenig, A. M., Hoffmann-Benning, S., & Vermaas, J. V. (2024). PLAT Domain Protein 1 (PLAT1/PLAFP) Binds to the Arabidopsis thaliana Plasma Membrane and Inserts a Lipid. Plant science 338. https://doi.org/10.1016/j.plantsci.2023.111900


Lee, Y.J., Hapuarachchige, P., Larson, E., Le, N.goc; Forsman, Trevor, 2024, Visualizing 13C-labeled Metabolites in Maize Root Tips with Mass Spectrometry Imaging, J. Am. Soc. Mass Spectrom. 35, 7. https://doi.org/10.1021/jasms.4c00042


Li-Beisson Y, Roston R. Plant and Algal Lipids: In All Their States and On All Scales. Plant and Cell Physiology. 2024 May, pcae061.


Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. J Hazard Mater. 2024 May 5;469:133951. doi: 10.1016/j.jhazmat.2024.133951. 


Na, S., Lee, Y.J., 2024, Mass Spectrometry Imaging of Arabidopsis thaliana with in vivo D2O Labeling, Front. Plant Sci. 15:1379299, https://doi.org/10.3389/fpls.2024.1379299.


Neumann N, Harman M, Kuhlman A, Durrett TP. 2024. Arabidopsis diacylglycerol acyltransferase1 mutants require fatty acid desaturation for normal seed development. Plant J. 119: 916-926.  doi: 10.1111/tpj.16805


Neumann N, Fei T, Wang T, Durrett TP. 2023. Defining the physical properties of blends of acetyl-triacylglycerols derived from transgenic oil seeds. J Am Oil Chem Soc. 101(2): 197–204. doi: 10.1002/aocs.12746


Nguyen D, Groth N, Mondloch K, Cahoon EB, Jones K, Busta L (2024) Project ChemicalBlooms: Collaborating with citizen scientists to survey the chemical diversity and phylogenetic distribution of plant epicuticular wax blooms. 8 (5), e588 https://doi.org/10.1002/pld3.588


Osinuga A, Solís AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R (2024) Deciphering Sphingolipid Biosynthesis Dynamics in Arabidopsis thaliana cell cultures: Quantitative Analysis Amidst Data Variability. iScience DOI: https://doi.org/10.1016/j.isci.2024.110675


Parchuri P, Bhandari S, Azeez A, Chen G, Johnson K, Shockey J, Smertenko A, Bates PD (2024) Identification of triacylglycerol remodeling mechanism to synthesize unusual fatty acid containing oils. Nature Communications 15 (1):3547. doi:10.1038/s41467-024-47995-x 


Qin, P.,Chen, P.,Zhou, Y.,Zhang, W.,Zhang, Y.,Xu, J.,Gan, L.,Liu, Y.,Romer, J.,Dormann, P.,Cahoon, E. B. & Zhang, C. (2024) Vitamin E biofortification: enhancement of seed tocopherol concentrations by altered chlorophyll metabolism, Front Plant Sci. 15, 1344095 [10.3389/fpls.2024.1344095].


Quach, T., Nguyen, H., Meyer, O., S.J. Sato, Clemente, T.E., and Guo, M. 2023. Introduction of genome editing reagents and genotyping of derived edited alleles in soybean (Glycine max (L.) Merr.) Plant Genome Engineering: Methods & Protocols https://doi.org/10.1007/978-1-0716-3131-7_17


Quach, T.N., Sato, S.J., Behrens, M.R., Black, P.N., DiRusso, C.C., Cerutti, H.D. and Clemente, T.E.. 2023. A facile Agrobacterium-mediated transformation method for the model unicellular green algae Chlamydomonas reinhardtii. In Vitro Cellular & Mol Biol.-Plant 59:671-683.


Schrick, K., Ahmad, B., Nguyen, H.V. 2023. HD-Zip IV transcription factors: Drivers of epidermal cell fate integrate metabolic signals. Curr Opin Plant Biol. 75:e102407. doi:10.1016/j.pbi.2023.102417


Shomo ZD, Mahboub S, Vanviratikul H, McCormick M, Tulyananda T, Roston RL, Warakanont J. All members of the Arabidopsis DGAT and PDAT acyltransferase families operate during high and low temperatures. Plant Physiology. 2024 May;195(1):685-97.


Shomo ZD, Li F, Smith CN, Edmonds SR, Roston RL. From Sensing to Acclimation: The Role of Membrane Lipid Remodeling in Plant Responses to Low Temperatures. Plant Physiology. 2024 Jul 19:kiae382.


Singh, G., Le, H., Ablordeppey, K., Long, S., Minocha, R., and Dhankher, O.P.. Overexpression of gamma-Glutamyl Cyclotransferases 2;1 (CsGGCT2;1) Reduces Arsenic Toxicity and Accumulation in Camelina sativa (L.). Plant Cell Reports, 43:14 (2024). https://doi.org/10.1007/s00299-023-03091-w


Spivey WW, Rustgi S, Welti R, Roth MR, Burow MD, Bridges WC Jr, Narayanan S. Lipid modulation contributes to heat stress adaptation in peanut. Front Plant Sci. 2023 Dec 18;14:1299371. doi: 10.3389/fpls.2023.1299371.


Surber SM, Thien Thao NP, Smith CN, Shomo ZD, Barnes AC, Roston RL. Exploring cotton SFR2’s conundrum in response to cold stress. Plant Signaling & Behavior. 2024 Dec 31;19(1):2362518.


Tat, V.T., Lee, Y.J., 2024, Spatiotemporal Study of Galactolipid Biosynthesis in Duckweed with Mass Spectrometry Imaging and in vivo Isotope Labeling, Plant and Cell Physiology, 65(6), 986–998. https://doi.org/10.1093/pcp/pcae032


Villalobos, J. A.,Cahoon, R. E.,Cahoon, E. B. & Wallace, I. S. (2024) Glucosylceramides impact cellulose deposition and cellulose synthase complex motility in Arabidopsis, Glycobiology. 34 [10.1093/glycob/cwae035].


Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. (2022) Overexpression of pea α-carboxyltransferase in Arabidopsis and Camelina increases fatty acid synthesis leading to improved seed oil content. Plant J. 110:1035-1046.


Wang S, Blume RY, Zhou ZW, Nazarenus TJ, Blume YB, Cahoon EB*, Chen L*, Liang G* (2024) Chromosome-level assembly and analysis of Camelina neglecta – a novel diploid model for camelina biotechnology research. Biotechnology for Biofuels and Bioproducts 17 (1), 17 (*Co-corresponding authors) https://doi.org/10.1186/s13068-024-02466-9


Vadde, B.V.L., Russell, N.J., Bagde, S.R., Askey, B., Saint-Antoine, M.M., Brownfield, B.A., Mughal, S., Apprill, L.E., Khosla, A., Clark, F.K., Schwarz, E.M., Alseekh, S., Fernie, A.R., Singh, A., Schrick, K., Fromme, J.C., Skirycz, A., Formosa-Jordan, P., Roeder, A.H.K. 2024. The transcription factor ATML1 maintains giant cell identity by inducing synthesis of its own long-chain fatty acid-containing ligands. Preprint in bioRxiv; doi:10.1101/2024.03.14.584694.


Wojciechowska, I., Mukherjee, T., Knox-Brown, P., Hu, X., Khosla, A., Subedi, B., Ahmad, B., Mathews, G.L., Panagakis, A.A., Thompson, K.A., Peery, S.T.,  Szlachetko, J., Thalhammer, A., Hincha, D.K., Skirycz, A., Schrick, K. 2024. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. New Phytol. (published online 7-1-2024). doi:10:1111/nph.19917


Xu, C.,Shaw, T.,Choppararu, S. A.,Lu, Y.,Farooq, S. N.,Qin, Y.,Hudson, M.,Weekley, B.,Fisher, M.,He, F.,Da Silva Nascimento, J. R.,Wergeles, N.,Joshi, T.,Bates, P. D.,Koo, A. J.,Allen, D. K.,Cahoon, E. B.,Thelen, J. J. & Xu, D. (2024) FatPlants: a comprehensive information system for lipid-related genes and metabolic pathways in plants, Database (Oxford). 2024 [10.1093/database/baae074].

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.