SAES-422 Multistate Research Activity Accomplishments Report

Status: Approved

Basic Information

Participants

*Dr. Margaret Rucker, University of California, Davis, CA Dr. Gang Sun, University of California, Davis *Dr. Anugrah Shaw, University of Maryland Eastern Shore, Princess Anne, MD Dr. Kay Obendorf, Cornell University, Ithaca, NY Ms. Charlotte Coffman, Cornell University, Ithaca, NY *Dr. Susan Ashdown, Cornell University, Ithaca, NY Dr. Donna Branson, Oklahoma State University, Stillwater, OK *Dr. Huantian Cao, Oklahoma State University, Stillwater, OK *Dr. Ajoy K. Sarkar, Colorado State University, Fort Collins, CO. *Dr. Karen LaBat, University of Minnesota, St. Paul, MN *Dr. Lynn Boorady, Ph.D. University of Missouri-Columbia Dr. Marilyn Delong, Administrative Advisor, University of Minnesota, St. Paul, MN *indicates voting member

Minutes of Meeting, NC 170 Multi-State Project Stillwater, Oklahoma, August 7-9, 2006 NC 170: Mediating Exposure to Environmental Hazards Through Textile Systems Listserv Address: NC170-LISTS@LISTS.UMN.EDU NC-170 Web Page: http://txnc170.human.cornell.edu/ Regional Research Manual: http://www.wisc.edu/ncra/manual.html Administrative Adviser: Chair: Vice Chair: Secretary Dr. Marilyn DeLong Design, Housing and Apparel 240 McNeal Hall 1985 Buford Avenue University of Minnesota Saint Paul, MN 55108-6136 mdelong@che.umn.edu Phone: 612-625-1219 Fax: 612-624-2750 Dr. Gang Sun Textiles & Clothing University of California One Shields Avenue Davis, CA 95616 gysun@ucdavis.edu Phone: 530-752-0840 Fax: 530-752-7584 Dr. Susan Ashdown Textiles & Apparel Cornell University 327 MVR Hall Ithaca, NY 14853 spa4@cornell.edu Phone: 607-255-1929 Fax: 607-255-1093 Dr. Margaret Rucker Textiles & Clothing University of California One Shields Avenue Davis, CA 95616 mhrucker@ucdavis.edu Phone: 530-752-2018 Fax: 530-752-7584 Members in Attendance: Susan Ashdown (New York), Lynn Boorady (Missouri), Donna Branson (Oklahoma), Huantian Cao (Oklahoma), Charlotte Coffman (New York), Marilyn DeLong (Minnesota, Administrative Advisor), Kay Obendorf (New York), Margaret Rucker (California), and Anugrah Shaw (Maryland). 1. Adopted agenda: August 7, 2006 (Monday) 9:00am New project proposal August 8, 2006 (Tuesday) Breakfast offered by the hotel 9:00-10:15 Call to order and introductions Approval of agenda Comments from USDA-CSREES Representative Comments from Dr. DeLong, Administrative Advisor Election of Officers Date and Place for 2007 Annual Meeting 10:15-10:30 Break 10:30-12:00 Funding discussed, new directions and new proposal, ideas for collaborations 12:00-1:00 Lunch 1:00-2:20 State Progress Reports California Colorado Maryland Minnesota 2:20-2:40 Break 2:40-3:40 State Progress Reports (continued) New York Oklahoma Texas 4:00-5:30 Tour Fire School of OSU 6:30 Dinner August 9, 2006 (Wednesday) 9:00-10:30 Discussions about new proposal 10:30-12:00 Future planning 12:00 Meeting adjourn 2. Dr. Ashdown called the meeting to order at 9:00 and asked attendees to introduce themselves. In addition to members listed above, we were joined by two guests from Oklahoma State University  Dr. Semra Peksoz and Ms. Pimpawan Kumphai. 3. Dr. DeLong reviewed important deadlines for the group. These were: Sep 15  submit Statement of Issues and Justification of the proposal in NIMSS. Oct 15 - call for participation in new proposals. Members are reminded to get directors approval for their participation and have this information entered into NIMSS. Nov 15 - impact statements are due. Dec 1  PROPOSAL DEADLINE. Dr. DeLong also encouraged review of new proposal criteria. Some of these criteria are: Is your project new or more of the same? Has there been a CRIS search? Does the proposal have a wide variety of expertise? Has the committee met deadlines? Is there good attendance at yearly meetings? Three types of actions may be taken with respect to proposals  approval, defer approval for modifications, or termination. Dr. DeLong also shared information about a new initiative to get more funding for competitive proposals. Create  21 is the name of this initiative. Along with trying to make funding more competitive, directors are also trying to increase overall funding. 4. Concern was expressed about having a USDA advisor at meetings of NC170. Joseph Wysocki has been assigned as our advisor. It was suggested that the chair contact him to ask for suggestions about interacting with the group. Perhaps meeting with the group by phone would be helpful. 5. Nominations for chair and secretary occurred next. Karen LaBat was nominated for chair, pending discussion with her. Lynn Boorady was nominated and unanimously approved as the groups new secretary. The group approved University of Minnesota as the location for next years meeting. Dates for next years meeting were discussed. Aug 6 and Aug 7 was the first choice and Aug 2 and 3 was the second choice and the third choice was Aug 9 and 10. 6. The original proposal was reviewed to establish how the work would be completed in the final year of the project. Outstanding issues include communication of data between stations and the completion of the design/testing of the coverall. A review of the use of human factors testing in the lab in the areas of sun coverage provided by the sun hats, thermal effectiveness of a cooling vest, and fit of a cooling vest and their contribution of useful data collected under controlled conditions was conducted. It was decided to substitute human factors testing of the fit and function of the coverall for the originally proposed field testing. The pesticide deposition testing in the original proposal will not be done as Iowa is no longer part of the project 7. Ashdown led a discussion of the new proposal. The decision was to stay with the current working title for the moment. The group was also satisfied with the current objectives. Branson and Shaw described and illustrated a flow chart for the research that involved three cycles. This led to three objectives: 1. Develop and evaluate new textiles and materials systems and processes to protect human health from multiple hazards. a. product development (membranes, NY; halamine, CA) b. performance testing and evaluation (NY, CA) c. technology transfer (CA) 2. Design and evaluate garment systems and processes to protect human health and enhance performance. a. design (OK) b. performance testing and evaluation 1) human factors evaluation (NY,OK,MN,MO,CA [fire fighter and pesticide applicator]) c. technology transfer (OK) 3. Establish a communication and education system for personal protective technology. a. integrate research findings (databases  MD,OK,CA) b. extend to industry and government (MD,OK) c. address user needs 1. user input (MD,OK,MN,NY) 2. training and education (NY [pesticides and first responders], MD [pesticides]) 8. The next topic to be covered was funding and collaborations. Possibilities for funding that were mentioned included NIOSH, EPA, DOD, and Department of Homeland Security. 9. State Progress Reports  see Appendix 10. New proposal assignments were made. Drs. Cao, Shaw and Ashdown will be the writing team. They will handle related current and past work on the proposal topic. Each committee member will write up their own methods. Drs. Coffman, Shaw, and Sun will work on the technology transfer and outreach plan. 11. Dr. Obendorf suggested we consider revising the organization and governance of our group by adding a vice chair. Discussion followed with the agreement to poll the members following the meeting. 11. The meeting was adjourned at noon on August 9. Appendix Abbreviated State Reports of NC-170 Committee Colorado research was directed towards examining the UV properties of nonwovens. Results showed that fiber content, thickness of the nonwoven substrate and substrate weight has the greatest influence on UVR transmission. On-going studies are investigating the relationship of cover factor to UPF for nonwovens. Impact: The results of this study show that fiber composition, thickness and weight are important parameters determining the UPF values of uncolored nonwoven substrates. Nonwoven substrates have previously not been studied for their protective abilities against ultraviolet radiation. Donna Branson, Oklahoma State University, Department of Design, Housing and Merchandising, 431 HES, Stillwater, OK, email: donna.branson@okstate.edu. Tel: 405-744-5050, Fax: 405-744-6910. Huantian Cao, Oklahoma State University, Department of Design, Housing and Merchandising, 431 HES, Stillwater, OK, email: huantian.cao@okstate.edu. Tel: 405-744-3015, Fax: 405-744-6910. Limb Body Armor Studies The limb body armor technology has been transferred to an Oklahoma sewn products manufacturer who produced about 5,300 units of Phase IV arm and leg body armor, QuadGard®, for the US Marine Corps. The development of Phase V prototype, a modular arm and leg body armor unit, was initiated with an order of 900 units being produced for the US Marine Corps. Next Generation Body Armor Study With funding from FSTechnology, OSU developed a Next Generation Load Carrying Ballistic Vest for the US Army. The OSU/FST torso body armor was selected as one of six finalist designs for wearability testing to be conducted at Fort Benning in mid-August, 2006. Chemical Detection Smart Textile Study A smart textile prototype, in which textile is used as the platform for portable USB2000 spectrophotometer, battery, and optical fiber cable, has been developed. This smart textile prototype has cyanide (NaCN) detection capability. Fire Turnout Gear Study With funding from a private company, OSU designed fire turnout coat and pants and tested for production capability. The work on a cooperative protective coverall project has continued with Missouri joining the group this past year. Data have been collected by California and New York and we have participated in two virtual design sessions with collaborators from New York, Minnesota, and California. These sessions included discussion on the poor fit observed in the photographs compiled by New York, the results from the user study and preliminary design goals. The team will be working to design protective apparel to improve moisture and heat transfer, reduce tearing, and improve fit. Margaret Rucker, University of California, Davis, Division of Textiles and Clothing, One Shields Avenue, Davis, CA, email: mhrucker@ucdavis.edu. Tel: 530-752-2018, Fax: 530-752-7584. Ning Pan, University of California, Davis, Division of Textiles and Clothing, One Shields Avenue, Davis, CA, email: npan@ucdavis.edu. Tel: 530-752-6232, Fax: 530-752-7584. Gang Sun, University of California, Davis, Division of Textiles and Clothing, One Shields Avenue, Davis, CA, email: gysun@ucdavis.edu. Tel: 530-752-0840. Work has continued on antibacterial processes for clothing and other textile products. Another research project has involved investigation of the factors affecting blistering of the human foot. A survey of hospital purchasing agents and health care workers regarding attitudes toward medical textiles indicated that different approaches are needed for the two groups to increase adoption of improved products. A study of effects of silk screened emblems on fire fighter PPE under two moisture conditions indicated that moisture tended to increase thermal hazards whereas emblems tended to decrease the hazards. An optimized grading system was developed as an alternative to current industry apparel grading systems. The system is based on a range of real body shapes and sizes. Body shapes and sizes were analyzed using body scans and initial fit quality of graded test garments were tested using the body scanner. A prototype hood for use in body temperature regulation was developed in conjunction with the University of Minnesota Extreme Environment Lab. The Minnesota Sun Smart program, instituted in 1994, was up-dated and presented to audiences throughout the state. Maryland conducted studies to compare the percent penetration of pesticides through fabrics that had been laundered using accelerated laundering method and home laundering. Maryland also conducted studies to determine percent penetration through fabric with and without seams. Laboratory data for 130 fabrics and field exposure data provided by CropLife International were analyzed and used for the development of performance specification. New work item was initiated for the development of ASTM performance specification. Other activities included submission of the information required by ISO to initiate a request for new work item for performance specification and performance of laboratory tests to screen fabrics for worker exposure studies. Analysis of 62 questionnaires and interviews of agricultural workers using protective clothing for pesticide use, and about 250 photographs of these workers in active working positions have been completed. Preliminary protocols for reliable 3D body scans for fit analysis of subjects in active positions were developed from these data. A password protected website was established and two videoconferences were organized to facilitate multi-state design work on more effective protective designs for agricultural workers. A study of reliable visual analysis of fit from body scans was completed that determined that two fit judges are sufficient for reliable analysis. Final analysis of body measurement data from standing and seated subjects shows that measurements increase and decrease in different ways depending on body size. A novel microporous membrane that responds to moisture/liquid content for use in protective clothing was developed by grafting polyethylene glycol on microporous polyurethane membrane. These membranes with reduced pore size maintain water vapor transport thus providing increased protection for clothing material while maintaining comfort properties for workers; they are appropriate for use in medical care worker protective clothing. Data analysis was completed on the PPE-Engineering Controls survey conducted in NY, IA, and MI and submitted for publication. Related educational materials are being tested. Recommendations were developed and proposed related to design of protective clothing for the ISO standard under development Protective clothing - Performance requirements for work and protective clothing for horticultural and agricultural pesticide workers.

Accomplishments

ACCOMPLISHMENTS AND IMPACTS: Major accomplishments during the past funding year that ended September 30, 2006 are summarized by objectives and sub-objectives below. Objective 1: To improve protection and human factor performance of PPE through product development. PRODUCT DEVELOPMENT STUDIES California continued research on antibacterial and antimicrobial processes for clothing and other textile products. Researchers are working on self-decontaminating textiles using halamine textiles, in collaboration with the National Personal Protective Technology Laboratory of NIOSH with GenTex is using their biocidal Nomex® fabrics in a military research project. Another California project has involved investigation of human foot blistering during intensive walking or running. In research on blistering, one clear obstacle is the difficulty of conducting experiments on humans or animals. Thus, computer modeling becomes the preferred research tool. In the California work, a coupling finite element model with a blister-characterized structure is used to investigate the effects of deformation and stress on an existing blister. This was accomplished by changing the friction coefficient and elastic modulus of the material in contact with the blister. California continued work on a cooperative protective coverall project with Dr. Susan Ashdown (New York). They collected verbal and visual data from 23 pesticide applicators in California and have participated in two virtual design sessions with collaborators from New York, Minnesota, and Missouri. California researchers have also continued work with the California Department of Forestry and Fire Protection (CDF) on the effects of silk screened emblems on thermal protection of protective clothing systems under two moisture conditions. The data supported previous work showing a decline in thermal protective properties of fire fighter clothing under conditions of high heat flux and a moist inner layer of clothing. The data on presence or absence of a silk screened emblem indicated that under almost all of the conditions considered in this study, the addition of an emblem served to increase protection rather than reduce it. Colorado reports that the beneficial effect of textiles as a barrier to UV radiation has been well documented in literature. Factors affecting UVR transmission of textiles include the chemical nature of the fiber, porosity or cover factor, thickness, weight, and wet processing treatments such as dyes and finishes applied to the textile. However, the review of literature reveals no report on the UV properties of nonwovens. Therefore the objective of this Colorado study was to determine the Ultraviolet Protective Factor (UPF) of six selected nonwovens. The UPF values obtained were analyzed vis-à-vis the fiber content, thickness and weight of the nonwovens. Data obtained show that fiber content has a significant influence on the UPF value and hence the protective ability of a nonwoven substrate. Nonwoven substrates with bleached cotton fibers afford very little UVR protection. Likewise, nonwovens with white undyed rayon fibers offer poor protection. However, bleached cotton fibers blended with combernoil waste increases the category of protection to Good. Nonwoven from wool fiber was found to have a high UPF value and can be classified in the Excellent UV Protection category. Polyester nonwovens fell in the Good UV Protection category. The best UV protection ability was exhibited by a composite of polyester, rayon and activated carbon suggesting that activated carbon is a very potent absorber of UV radiation. Substrate weight and thickness have an influence on UVR transmission. A positive correlation was observed between the weight and thickness of the nonwovens and UPF values. Heavier and thicker nonwovens permit less UVR to be transmitted presumably because smaller spaces are available for the radiation to pass through. Minnesota researchers in the Human Dimensioning Lab continued a previous study to improve apparel grading practices used in industry to size apparel. Previous research indicated that grading practice is not based on real human dimensions. This study uses dimensions of real humans derived from body scans that represent a statistically calculated range of body sizes. The fit of garments based on a new grading logarithm are being tested. Minnesota is working with researchers in the University of Minnesota Laboratory for Health and Human Performance in Extreme Environments to develop thermal regulation garments for space flight. Close body contact (excellent fit) of cooling/warming garments is essential to make best use of conduction to maintain safe body temperature. Physiologists in the Extreme Environments Lab determined body surfaces that provide most efficient heat conduction. Researchers in the Human Dimensioning Lab developed garment structures that maintain maximum position of heating/cooling mechanisms on these body surfaces. A temperature regulating glove liner for a space glove is currently in review by NASA. Shape and sizing of a temperature-regulating hood for space flight is currently in progress and being tested in the Extreme Environments Lab. New York developed a novel microporous membrane that responds to moisture/liquid content for use in protective clothing, the surface of microporous polyurethane membrane was modified by graft polymerization with different molecular weights of poly(ethylene glycol) (PEG). Surface grafting was confirmed, and appropriate grafting time and temperature were determined. The hydrophilicity of microporous polyurethane membranes was improved after surface modification with PEG. Both the surface pore sizes of the PU membranes and the constricted part of through pore sizes of the bulk PU membranes were reduced, as revealed by the pore size distribution using image analysis and capillary flow porometer, respectively. The reduced pore sizes are expected to enhance the barrier properties by reducing the possibility of harmful particles and liquid borne pathogen penetration. Water vapor transmission rate (WVTR) measurements indicated that the pores of the modified PU membranes were responsive to the moisture content. Scheme 1. (A) Functionalization of PU membrane surface with isocyanate groups; (B) Grafting with PEG chains. (a) before modification (b) after modification Fig. 1. Image analysis of pore size distribution of the PU membrane before and after surface modification with PEG1500. Table 1 Physical Properties of PU membranes related to WVTR Mw of PEG Thickness (¼m) Response time (min) WVTR (g/m2/24 h) 600 50.0 ± 0.1 0~60 630.5 ± 8.1 1500 52.5 ± 0.1 60~120 654.7 ± 3.3 4600 52.5 ± 0.1 120~180 693.6 ± 4.5 Human Factors Studies Data collection from a study of users of protective apparel for protection from pesticides was completed by California and New York researchers. Sixty-two agricultural workers, 40 from NY and 22 from CA have been interviewed, photographed in working positions, and have completed questionnaires on coverall use. More than 250 photographs were taken to document working positions and fit issues with the coveralls. Analyses of these data have been completed and summarized for use in setting design parameters for the development of clothing that will provide improved protection and comfort. A password protected website with the photographs of the subjects and the data analyses from the questionnaires and interviews has been has been created to make this data readily available to the entire design team from NY, CA, MN, and MO. Content analysis results from the photographs categorize the primary working positions of interest for design of the coveralls as: bending at the waist, crouching on one knee, crouching on two knees, reaching forward, reaching up, stepping up (low), stepping up (high) and donning the coverall. Problems with the fit of the coveralls observed include poor fit at the neck, arms and/or legs too short, tightness in the hip, stress folds at the crotch and thigh, stress folds across the shoulders and underarms, and excess fabric in the thigh area. A preliminary working protocol has been developed for capturing reliable 3D body scans for fit analysis of subjects in working positions based on the photographs. Nine active body positions plus a standing position have been identified to capture the range of positions used in pesticide application. A method of reliably setting these positions for a variety of subjects at different research facilities has been developed based on a set of positioning marks based on the shoulder width of each subject, and several standard sized boxes. Results of the human factors studies are being incorporated into design concepts being developed by a collaborative research/design team from New York, California, and Minnesota, with the addition to the team this year of a researcher from Missouri. The team is focusing on design of a disposable protective coverall to improve moisture and heat transfer, reduce tearing, and improve fit. The team has participated in two videoconference design sessions to begin the design process for the protective clothing. In these sessions the results from the user study and the preliminary design goals were discussed. New York conducted a study of the reliability of 3D body scans for fit analysis. Statistical analysis of fit assessments of 153 scans by five judges showed that two judges are sufficient for reliable fit ratings if visual fit parameters are established and clearly defined in advance. To ensure reliability and validity it is necessary that the instrument scale be well designed so that it is used consistently by all judges. Visual analysis of fit was shown to be effective for most body areas; however, complex areas of misfit that are difficult to rate visually, such as the crotch, may require an additional assessment methodology. New York completed an analysis of data from a study of the variation in body measurements between standing and seated postures. Analysis of lower body measurement changes show that differences in measurements increase in circumferences and breadths, while crotch lengths decrease when the subject sits. The variation in measurement changes were investigated for different sizes of subjects as categorized by BMI (body mass index). For the different variables a tendency was observed of measurements to increase or decrease (crotch length) as the BMI values increase, with significant differences occurring at the hip circumference, waist breadth and thigh breadth. Oklahoma continued development of Limb Body Armor. Funding for this project was from the Naval Research Laboratory via a sub-contract with a private company, FSTechnology, LLC. The focus of this years work was two-fold: first, transfer of the limb body armor technology to an Oklahoma sewn products manufacturer who produced about 5,300 units of the Phase IV arm and leg body armor, QuadGard®. About 4,900 of the units are in Iraq being used by the US Marine Corps. Two ITAA presentations will detail this effort that included refining the design, patenting the design, developing multiple sizes, producing shop directions and bill of materials, assisting the private company to locate textile vendors to supply all component parts, finding a manufacturer willing to produce the units, training the production personnel, completing a manufacturing quality assurance plan, and being available to the manufacturer for assistance in the production phase. Second, Oklahoma initiated development of the Phase V prototype, a modular arm and leg body armor work. The concept entailed producing a modular limb body armor that could be customized by the individual soldier, or by a given commander, based on the mission and environmental issues. Prototypes were fabricated, tested at military facilities, and the design was refined. An ITAA juried design exhibition will feature this version. The technology was similarly transferred to the same Oklahoma sewn products manufacturer for production using the process outlined above. An order for 900 units is currently being produced for the US Marine Corps. The US Army has ordered 6 units for testing at Fort Benning in mid-August, 2006. Oklahoma secured private funding from FSTechnology for the Next Generation Body Armor Project, the goal being to develop a Next Generation Load Carrying Ballistic Vest for the US Army. Fifteen criteria were given by the US Army that the torso armor was to possess. The OSU/FST torso armor was selected as one of six finalist designs for wearability testing to be conducted at Fort Benning in mid-August, 2006. A train the trainer session was held in Washington DC to teach army personnel, donning, using, doffing, and quick release features of the armor system. The same Oklahoma sewn products manufacturer is producing the 25 units for testing, and the same technology transfer process was used as described above. A provisional patent has been filed. Oklahoma received funding for the Chemical Detection Smart Textile Study from the National Science Foundation and U.S. Intelligence Community through Approaches to Combat Terrorism (ACT) program. This is an exploratory research to use textile fabric as the sensing surface for chemical detection. Colorant porphyrins will have spectral shift when bound with other chemicals. This property can be used to detect toxic chemicals in environment. In this study, we choose cyanide (NaCN) and organophosphate (diazinon) as target toxic chemicals. In the 2005 annual report, Oklahoma reported the detection of NaCN and diazinon by porphyrins in solution and porphyrin dyed cotton fabrics. The spectral shifts were measured using a desktop spectrophotometer Cary 300 with an integrated sphere. In chemical detection smart textile prototype development, we used a portable spectrophotometer to replace the desktop Cary 300. The detection components include a LED light source powered by a 9-voltage battery, a portable USB2000 spectrophotometer from Ocean Optics as spectral measurement device, and optical fiber cable to transmit light. To provide better spectral measurement and chemical detection, porphyrin dyed cotton fabric has to be flat and fixed in position, and LED light source, porphyrin dyed fabric and the detection head of optical fiber cable have to be aligned. A device is made to hold the fabric, and assure the alignment. Textile is used as the platform for USB2000 spectrophotometer, battery, optical fiber cable, and a smart textile prototype has been developed. This smart textile prototype was tested for NaCN and diazinon detection. We planned to use a handheld computer PDA to collect and analyze data. However, Ocean Optics discontinued supporting the interface between USB2000 and PDA. Therefore, in this study, we have to use a desktop computer for data collection and analysis. For NaCN detection, after 600ppb NaCN was added to the smart textile prototype, a spectral shift was observed. Our smart textile prototype has NaCN detection capability. For diazinon detection test, no spectral shift was observed after adding diazinon. Our smart textile prototype did not detect diazinon. In Cary 300 spectrophotometer testing, the detection limit of diazinon is very high (11ppm) compared with that of NaCN (100ppb). The sensitivity of the USB2000 spectrophotometer is not as good as the Cary 300 spectrophotometer. Without the integrated sphere, the sensitivity of USB2000 is even worse. These are likely the reasons to explain why our smart textile prototype could not detect diazinon. The diazinon detection study using Cary 300 spectrophotometer was presented in 2005 International Textile and Apparel Association Conference. One manuscript was accepted for publication by Dyes and Pigments. Objective 2: To examine user acceptance and barriers to acceptance of PPE products and practices. California completed analyses of data from a survey of healthcare workers and hospital purchasing agents. The analysis of rankings of selected medical textile properties provided by the two groups of respondents indicated that purchasing agents place more emphasis on external issues such as compliance with regulations and price, whereas healthcare workers emphasize the personal aspects of medical textiles such as barrier protection and antimicrobial properties. Furthermore, attitudes toward switching from one product to another and subjective norms were significant predictors of adoption of an improved medical textile product in the purchasing agent group but not in the healthcare worker group. These data suggest that different appeals are necessary for purchasing agents versus healthcare workers to enhance adoption of improved medical PPE. New York participated in a study of pesticide handlers understanding of how PPE requirements change with adoption of engineering devices for application. Findings from the PPE-Engineering Controls Survey conducted in New York, Iowa, and Michigan showed that a high percentage of respondents wear the required PPE. The most commonly worn garments were chemical-resistant gloves (79.9%), work clothes (62.8%), safety glasses, (48.9%), and hats (47.6%). Eight out of 16 engineering controls were used by more than half of the respondents. The most common devices were enclosed tractor cabs (72.2%), low-drift nozzles (70.6%), and handwash water supply (64.3%). Adoption of these devices was influenced by size of operation, application equipment, and type of crops. Relationships between the use of engineering controls and PPE were examined. The majority of the respondents (87.3%) reported that they do not wear less PPE because they have engineering controls and a significant number reported that they are even more likely to wear chemical-resistant gloves when using engineering controls. Only 12.7% reported using less PPE while using engineering controls. The PPE items most affected by the use of engineering controls were half-face respirators and safety glasses. State specific data provide additional guidance in the development of appropriate training materials. NY has drafted educational materials relating pesticide label statements with the use of engineering controls and the wearing of PPE. These materials are being tested with educators and pesticide applicators. Objective 3: to develop performance specifications for protective clothing materials. Maryland conducted studies to compare the percent penetration of pesticides through fabrics that had been laundered using accelerated laundering method and home laundering. The home laundering was done by NanoTex and the accelerated laundering at UMES. Results of the study were used to specify the number of launderings required as part of fabric preparation for the performance specifications. Maryland also conducted studies to determine percent penetration through fabric with and without seams. Seams of all garments in our collection were used for the study. Results of the study were used for the development of performance specifications. At Maryland Laboratory data for 130 fabrics and field exposure data provided by CropLife International was analyzed and used for the development of performance specification. Maryland initiated a new work item after the ASTM Committee meeting in Feb. 2006 for the development of ASTM performance specification. A draft was prepared and permission obtained from ASTM to submit the draft to ISO concurrently for balloting. The ASTM draft was circulated to NC 170 members as well as the ASTM task group members. The final draft entitled Protective clothing  Performance requirements for protective clothing for horticultural and agricultural pesticide applicators will be submitted to ASTM for sub-committee ballot in Fall 2006. Maryland also submitted the information required by ISO to initiate a request for new work item for performance specification. The member countries approved the new work item. The ISO draft was circulated to NC 170 members as well as individuals in industry, academia, and governmental agencies in several countries. The final draft entitled Protective clothing  Performance requirements for protective clothing for horticultural and agricultural pesticide applicators will be submitted to ISO for balloting in Fall 2006. In addition, Maryland conducted laboratory tests to screen fabrics for worker exposure studies. New York developed and proposed recommendations related to design and size selection of protective clothing for the ISO and ASTM performance standards, "Protective clothing - Performance requirements for work and protective clothing for horticultural and agricultural pesticide workers" described above. Outreach Minnesota continued collaboration with UMES in delivery of the Minnesota Sun Smart program to educate citizens of Minnesota about safety measures to prevent over-exposure to sun/UV rays. Audiences include 4-H children and teens, farmers, highway workers, golf course workers, and landscape workers. New York continued outreach on PPE for pesticide applicators, their families, and agriculture and safety educators through certification training, exhibits, publications, websites, and telephone responses. New York continues to maintain the NC-170 Regional Research website on a server in the College of Human Ecology at Cornell University. Website hits total 3193 with October receiving the most visitors and January the fewest. Browsers MSIE6.x and MSIE5.x account for 76 percent of the traffic. The primary search engines are Google (42 percent), MSN (38 percent), and Yahoo (14 percent). IMPACTS The work on biocidal Nomex® conducted by California will provide personnel facing multiple hazards with protective clothing that maximizes protection while maintaining satisfactory levels of comfort and durability. California reports that foot blisters, as a common injury associated with intensive movements including those involved in sports and military operations, can adversely affect or even halt the performance of affected personnel. Therefore, a better understanding of factors related to this type of injury can benefit people in a variety of occupations as well as those who exercise outside the work environment. The results of the California thermal protective clothing study reinforce the need to advise fire fighters of the increased hazards associated with wet garment systems. The results also suggest that silk screened emblems may actually provide additional protection under certain conditions. The medical textiles study provides information on how to increase adoption of improved PPE at the purchasing agent level as well as the healthcare worker level. The results of the Colorado study show that fiber composition, thickness and weight are important parameters determining the UPF values of uncolored nonwoven substrates. Nonwoven substrates have previously not been studied for their protective abilities against ultraviolet radiation. Marylands laboratory studies as well field study data provided by CropLife International contributed to the development of the performance specification draft that has the potential of providing information regarding selection, use care and maintenance of protective clothing garments for pesticide applicators. Harmonized ASTM and ISO will enable countries using the respective standards to develop educational materials based on performance specifications. The Minnesota Sun Smart outreach program on sun safety, was instituted in 1994 and has been presented to people of all ages throughout the state of Minnesota and is estimated to have reached in excess of 50,000 people. The program is continually updated and revised incorporating new findings on sun protection, making it relevant to new audiences. Minnesota research efforts through the Human Dimensioning Laboratory, the Extreme Environments Laboratory, and the Mechanical Engineering Biofactors Lab are striving to combine a total human factors approach to the design and testing of protective clothing. Body temperature maintenance garments in conjunction with the U of MN Extreme Environments Lab are in review by NASA. The Human Dimensioning Laboratory motion capture system has potential for evaluating ease of movement in PPE. Development of protocols, data collection, and analysis methods for use with the 3-D body scanner being conducted at New York will contribute to the growing number of research projects related to apparel using this tool. Collaborative projects with the University of Iowa Virtual Soldier project and with the US Army facility at Natick are being explored. The advanced understanding of the fit and sizing of protective garments will lead to better performance and protection of the apparel. Collaborative research and design methods being explored by New York, California, Missouri, and Minnesota can lead to methods of integrating many perspectives on use of new materials, incorporating body dimension data into apparel, and methods of testing effectiveness of new designs. Oklahoma is receiving information on protection provided with Body Armor reported above. Reports are beginning to come from Iraq indicating that soldiers wearing QuadGard® who suffered an IED, did not experience limb injuries from shrapnel. If these reports continue, then clearly, the use of limb body armor would be shown to be very beneficial. The next generation torso armor being prepared for testing, has the potential to lessen injuries to the back and shoulders from load carriage and SAPI plate carriage, as well as lessen injuries to the lower back from shrapnel due to extended coverage of the OSU/FST vest. The Oklahoma Chemical Detection Smart Textile Study develops a smart textile prototype to use textiles as a platform for chemical detection sensors. Using this smart textile in protective clothing will provide first responders with an early alert of and better protection against toxic chemicals in the environment. WORK PLANNED FOR NEXT YEAR At California: California plans to include additional work on antibacterial and antimicrobial processes and continued investigation, both theoretically and experimentally, of the mechanisms involved when textile products interact with human skin.Work will also continue on improving the design of pesticide protective coveralls and assessing the effects of moisture in different types of thermal protective clothing systems. Initial work will be done on a protective clothing data base. At Colorado: Colorado is investigating the relationship of cover factor to UPF for nonwovens. A second study is investigating the effect of post-enzymatic dyeing of cotton fabrics on UPF and percent cover. At Maryland: Maryland will continue work on standards development, laboratory testing and worker exposure studies with specific plans to: " Finalize the performance specification draft and submit it to ASTM International and ISO for balloting. " Identify six laboratories willing to participate in the interlaboratory test for the pipette method. Work with the laboratories to conduct interlaboratory tests. " Revise ASTM F2130 standard and submit it for balloting " Continue to collaborate with CropLife and other groups involved with worker exposure studies. At Minnesota: The motion capture system developed by BTS is being tested for use in evaluating human range of motion in PPE. This technology may prove useful for the team of researcher/designers (New York, California, Missouri, Minnesota) developing new disposable pesticide applicators garments. Work will continue with the Extreme Environments Lab to test the space hood and to pursue new opportunities for garment design for space exploration. Results of a revised grading approach for apparel will be reviewed for possible application to PPE. The Minnesota SunSmart Program continues as an outreach program facilitated by our extension educator. At Missouri: Projects planned for next year include continuing to improve on the design of pesticide protective coveralls and instituting successful protocol for design video conferencing. Fabric samples will be obtained to ascertain the hand of the fabric and any special considerations. Missouri has taken on the responsibility of organizing and scheduling the virtual design sessions. At New York: New York plans to continue work on membranes for improved protective clothing by: " Exploring the science and engineering of new membranes for personal protection. " Developing hybrid microporous membranes that respond to moisture/liquid content for use in chemical and biological protective clothing. " Studying the surface modification of polyurethane (PU) membranes with N-halamine structures and evaluate the antimicrobial efficacies. " Modifying the microporous hydrophobic polyolefin membrane surfaces with hydrophilic grafts. " Developing a functional membrane casting procedure and explore the casting and membrane formation mechanism. " Evaluating the decontamination properties of halamine treated fabrics in order to understand what level of increased protection is provided by this decontamination mechanism. New York plans to pilot test educational tools that help pesticide applicators comply with pesticide label statements and the Worker Protection Standard through the use of engineering controls and PPE. New York will also continue to work with designers from CA, MS, MN, and OK to develop and test a disposable coverall for pesticide protection At Oklahoma: The NSF funded exploratory study of chemical detection smart textiles has been completed. The investigation of using porphyrin and porphyrin dyed textile fabric to detect other toxic chemicals such as carbamate, another widely used pesticide, will be conducted.

Impacts

  1. see accomplishments

Publications

PUBLICATIONS/PRESENTATIONS BY STATE: California: In Print Full length Articles Liuyang Wang, Xie J, Gu LX, & Gang Sun (2006). Preparation of antimicrobial polyacrylonitrile fibers: Blending with polyacrylonitrile-co-3-allyl-5,5-dimethylhydantoin, Polymer Bulletin, 56 (2-3): 247-256. Xin Fei, T. Shibamoto, Pengfei Gao, & Gang Sun (2006). Pesticide detoxifying functions and N-halamine fabrics, Archives of Environmental Contamination and Toxicology, available online. Wen Zhong, Malcolm MQ Xing, Ning Pan & Howard I Maibach, Textiles and human skin, microclimate, cutaneous reactions: An overview, Journal of Toxicology: Cutaneous and Ocular Toxicology, 25 (1): 23-39. Malcolm MQ Xing, Zhiguo Sun, Wen Zhong, Ning Pan & Howard Maibach, An EFE model on skin - sleeve interactions during arm rotation, ASME Journal of Biomechnical Engineering, in press. Malcolm MQ Xing, Wen Zhong, Ning Pan & Howard Maibach, Numerical model of skin frictional blistering, Skin Science and Technology, in press. Rucker, M. (2006). The effects of silk screened emblems on thermal protection of wildland fire fighter protective clothing systems under two moisture conditions. Report to the California Department of Forestry and Fire Protection. Refereed Presentations Sun, G., Kaiser, S. B., Rucker, M. H., Bhuie, A., Overcash, M., Nicas, M., & Wang, Lu. Health protective textiles: Bridging the disposable/reusable divide. Presented at the Reusable Medical Textiles Conference, April 26-27, 2006, Indianapolis, IN. Lu, Y. & Rucker, M. Attitudes toward medical textiles: Purchasing agents and doctors.. Presented at the Reusable Medical Textiles Conference, April 26-27, 2006, Indianapolis, IN. Colorado: Book Chapter Sarkar, A.K. (2005). Textiles for UV protection. In: Scott, R.A. (Ed.), Textiles for protection. Cambridge, UK: Woodhead Publishing Limited. Refereed Presentations Sarkar, A.K., Ramkumar, S.S., Kanukuntla, S., and Dhandapani, R. (2006). UV characteristics of cotton and blended nonwovens [Abstract]. In: Proceedings of the Beltwide Cotton Conferences, National Cotton Council of America. Maryland: Book Chapter Shaw, A. (2005). Chapter 4: Steps in selection of protective clothing materials, In: Scott, R.A. (Ed.), Textiles for protection. Cambridge, UK: Woodhead Publishing Limited. Refereed Presentations Shaw, A. and Pagadala, S. PPE for Pesticide Applicators: Performance of Protective Clothing Materials with Repellent Finishes, International Conference  Research and Standardization in the Field of Development and Use of Personal Protective Equipment, Cracow, Poland, September 2005 Shaw, A. and Vankalaya G., Protective clothing for pesticide applicators: a comprehensive online system for data management, analysis and dissemination of information, 3rd European Conference on Protective Clothing and NOKOBETEF 8, Gdynia, Poland, May 2006 Minnesota: In Print Full-length Articles Bye, E., LaBat, K., & DeLong, M. (2006). Analysis of body measurement systems for apparel. Clothing and Textiles Research Journal, 24(2), 66-79 . Schofield, N., Ashdown, S., Hethorn, J., LaBat, K., & Salusso, C. (2006). Improving apparel fit for women 55 and older through an exploration of two pant shapes. Clothing and Textiles Research Journal, 24(2), 147-160. Book Chapter In Press LaBat, K. (in press). Sizing Standardisation, in Ashdown, S.P., Editor. Sizing in Clothing: Developing Effective Sizing Systems for Ready-To-Wear Clothing, Woodhead Publishing Limited. Encyclopedia Entry LaBat, K. (2006). Human factors and apparel design, International Encyclopedia of Ergonomics and Human Factors. Boca Raton, Florida: CRC Press. Masters Thesis Completed Karen Ryan, M.D., Aesthetically unique, specially sized clothing for women with osteoporotic posture changes, May 2006 Web Site Human Dimensioning Laboratory,University of Minnesota, College of Design, http://dha.cdes.umn.edu/outreach_center/Human_Dimensioning_Lab.html Refereed Presentations McKinney, E., Bye, E., LaBat, K, Delong, M., & Kim, D. Linking research and education through the Human Dimensioning Laboratory. International Fiber Societies Conference 2006, Seoul, Korea, May 31-June 2, 2006. DeLong, M., LaBat, K., Bye, E. Advancing apparel fit and sizing at the Univeristy of Minnesota, Cultural Exchange Project: Mission Continued, International Commemorative Symposium of the 60th Anniversary of Hong-Ik University, Seoul, Korea, May 2006. Non-refereed Presentations LaBat, K., Bye, E. & DeLong, M. History of fit and sizing research at the University of Minnesota, Seoul National University, Seoul, Korea, May 2006. LaBat, K. Functional clothing design research at the University of Minnesota, Ehwa Womans University, Seoul, Korea, May, 2006 New York: In Print Full-length Articles Kuitian Tan, S. Kay Obendorf, Surface Modification of Microporous Polyurethane Membrane with Poly(ethylene glycol) to Develop a Hybrid Membrane, Journal of Membrane Science 274:150158 (2006). S. K. Obendorf, A.T. Lemley, A. Hedge, A.A. Kline, K. Tan, T. Dokuchayeva, Distribution of Pesticide Residue within Homes in Central New York State, Archive of Environmental Contamination and Toxicology, 50:31-44 (2006). Lee, J. & Ashdown, S. P., Upper Body Change Analysis using 3-D Body Scanner, Journal of the Korean Society of Clothing and Textiles, English Edition 29 (12), 1595-1607 (2005). Ashdown, S. P., Slocum, A., & Lee Y. A., The Third Dimension for Apparel Designers: Visual Assessment of Hat Designs for Sun Protection using 3-D Scan Images, Clothing and Textiles Research Journal 23 (3) 151-164 (2005). Ashdown, S. P. & OConnell, E. K., Comparison of Test Protocols for Judging the Fit of Mature Womens Apparel, Clothing and Textiles Research Journal, Focused Issue on Fit 24(2), 137-146 (2006). Lee, Y. A., Ashdown, S. P., Slocum, A. C., Measurement of Surface Area of 3-D Body Scans to Assess the Effectiveness of Hats for Sun Protection, Family and Consumer Sciences Research Journal 34(4), 366-385. Available at http://fcs.sagepub.com/cgi/reprint/34/4/366 (2006). In Press Full-length Articles Seungsin Lee and S. Kay Obendorf, Developing Protective Textile Materials as Barriers to Liquid Penetration Using Melt-Electrospinning, Journal of Applied Polymer Science (in press) Lee, Seungsin and Obendorf, S. Kay. Barrier Effectiveness and Thermal Comfort of Protective Clothing Materials, Journal of the Textile Institute (in press) Seungsin Lee and S. Kay Obendorf , Use of Electrospun Nanofiver Web for Protective Textile Materials as Barriers to Liquid Penetration, Textile Research Journal (in press) Book In Press Ashdown, S.P., Editor. Sizing in Clothing: Developing Effective Sizing Systems for Ready-To-Wear Clothing, Woodhead Publishing Limited. Submitted Full-length Articles Coffman, C. W., Stone, J. F., Slocum, A., Landers, A. J., Schwab, C. V., Olsen, L, and Lee, S. Influence of Engineering Controls on Personal Protective Equipment Use, Journal of Agricultural Safety and Health (submitted). Petrova, A. and Ashdown, S.P. 3-D Body Scan Data Analysis: Body Size and Shape Dependence of Ease Values for Pants Fit. Clothing and Textiles Research Journal. (submitted). Abstracts Nam, J., Branson, D., Cao, H., Ashdown, S. P., & Schoenfelder, K. 3D Body Scanning: Methods and Data Analysis Development for Quantifying Ease. 2005 International Textile and Apparel Association Proceedings. Lyman-Clarke, L., Ashdown, S. P., Loker, S., Lewis, V. D., & Schoenfelder, K. A Comparison of Visual Analysis Rating Systems. 2005 International Textile and Apparel Association Proceedings Non-Refereed Publications Coffman, C. Enclosed Cabs Reduce Pesticide Exposure, Textiles & Apparel News 22 (3): 4. September, 2006. Refereed Presentations Coffman, Charlotte W. Testing for PPE Resistance for Pesticide Penetration, Northeast Pesticide Safety Education and Certification Workshop, September 25, 2006, Mystic, CT. Coffman, Charlotte W. Understanding Tradeoffs between Engineering Controls to Reduce Pesticide Exposure and Use of PPE, Northeast Pesticide Safety Education and Certification Workshop, September 25, 2006, Mystic, CT. Coffman, Charlotte W. Household dust Study: Pesticide Residues Found in Dust Samples Collected from New York Homes, Northeast Pesticide Safety Education and Certification Workshop, September 26, 2006, Mystic, CT. Coffman, Charlotte W., Stone, Janis F., Slocum, Ann, Landers, Andrew J., Schwab, Charles V., Olsen, Larry G. and Lee, Seungsin. Influence of Engineering Controls on Personal Protective Equipment Use, Fiber Society, Seoul, Korea, May 31-June 2, 2006 (poster) Kuitian Tan and S. Kay Obendorf, Development of a Novel Membrane Intended for High Performance Protective Clothing, Fiber Society, October 17-19, 2005, Newark, NJ. Seungsin Lee and S. Kay Obendorf, Developing Protective Textile Materials as Barriers to Liquid Penetration Using Melt-Electrospinning (poster), Fiber Society, October 17-19, 2005, Newark, NJ. Kuitian Tan and S. Kay Obendorf, C05-CR01: Hybrid Microporous Membranes Intended for Protective Clothing (poster), National Textile Center Forum, February 20, 2006. Seungsin Lee and S. Kay Obendorf, Use of Electrospun Nanofiber Web for Protective Textile Materials as Barriers to Liquid Penetration, Fiber Society, Seoul, Korea, May 31-June 2, 2006 (poster) Ashdown, S. P., Loker, S., Carnrite, E. Digitizing the Fit Model using 3D Body Scanning Technology. Presentation at the International Foundation of Fashion Technology Institutes Conference, Raleigh, NC, June 18-22 2006. Nam, J., Branson, D., Cao, H., Ashdown, S. P., & Schoenfelder, K. 3D Body Scanning: Methods and Data Analysis Development for Quantifying Ease. Presentation at the International Textile and Apparel Association Conference, Alexandria, VA, November 1-6, 2005. Lyman-Clarke, L., Ashdown, S. P., Loker, S., Lewis, V. D., & Schoenfelder, K. A Comparison of Visual Analysis Rating Systems. International Textile and Apparel Association Conference, Alexandria, VA, November 1-6, 2005. (poster) Ashdown, S.P. & Loker, S. Improved Apparel Sizing: Fit and Anthropometric 3D Scan Data, (poster) National Textile Center Forum, Hilton Head, SC, Feb. 19-21, 2006. Non-refereed Presentations Coffman, C. Protective Clothing and Gear and Cornell Research Related to PPE, Advanced Horticulture School, Rochester, NY, January 31, 2006. Coffman, C. PPE When Handling Pesticides, Pesticide Applicator Certification Orientation, Ithaca, NY. January 18, 2006. Internet Occupational Safety and Protective Clothing, http://txnc170.human.cornell.edu/ Personal Pesticide Protection, http://www.humec.cornell.edu/units/txa/extension/pest/ Body Scanning for Apparel, http://www.explore.cornell.edu/bodyscanner Sizing and Fit of Apparel, http://www.legacyhuman.wpg.cornell.edu/txa/faculty/SizingSystems/index_flash.html Oklahoma: Full-length articles in print Cao, H., Branson, D. H., Peksoz, S., Nam, J., & Farr, C. A. (2006). Fabric selection for a liquid cooling garment. Textile Research Journal, 76(7), 587-595. Nam, J., Branson, D.H., Ashdown, S., Cao, H., Jin, B., Peksoz, S., and Farr, C. (2005). Fit analysis of liquid cooled vest prototypes using 3D body scanning technology. Journal of Textile and Apparel, Technology and Management, 4(3). Full-length articles in press Cao, H., Nam, J., Harmon, H. J., & Branson, D. H. (in press). Spectrophotometric detection of organophosphate diazinon by porphyrin solution and porphyrin-dyed cotton fabric. Dyes and Pigments. Book Chapter In Press Branson, D.H. & Nam, J. (in press). Materials and sizing, in Ashdown, S.P., Editor. Sizing in Clothing: Developing Effective Sizing Systems for Ready-To-Wear Clothing, Woodhead Publishing Limited. Juried Design Exhibits/Competitions Peksoz, S., Branson, D., and Farr, C. (November 2005). QuadGard® Body Armor. At the International Textiles and Apparel Association Annual Conference Juried Exhibition, Alexandria, VA. Refereed Presentations Cao, H., Harmon, H. J., & Branson, D. H. (2005, November). Detection of organophosphate by porphyrin solution and porphyrin-dyed cotton fabric. Paper presented at the annual meeting of International Textile and Apparel Association, Alexandria, VA. Nam, J., Branson, D.,Cao, H., Asdown, S., and Schoenfelder, K. (2005, November). 3D body scanning: Methods and data analysis development for quantifying ease. ITAA Annual Conference, Alexandria, VA. Rupert, N.L., Matic, P., Hubler, G.K., Frost, J., Branson, D., Bruno, R.S., Blethen, W.C., Sprague, J.S., Simmons, K., Farr, C., and Peksoz, S. (2005). 22nd International Symposium of Ballistics, Vancouver, British Columbia. Peksoz, S., Quevedo, V., Branson, D. Gam, HaeJin, and Ricord, D., (2006, November). Meeting an industry request: Developing prototype firefighter bunker gear. ITAA Annual Conference, San Antonio, TX. Branson, D., Peksoz, S., Ricord, D., Farr, C., and Kumphai, P. (2006, November). Commercializing QuadGard(r) body armor: Initial steps. ITAA Annual Conference, San Antonio, TX. Ricord, D., Kumphai, P., Branson, D., and Peksoz, S. (2006, November). Breaking ground: Moving from laboratory prototype to apparel production. ITAA Annual Conference, San Antonio, TX. Starr, C., Branson, D., Peksoz, S., and Ricord, D. (2006, November). Child's medical support garment prototype. ITAA Annual Conference, San Antonio, TX.
Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.