SAES-422 Multistate Research Activity Accomplishments Report

Status: Approved

Basic Information

Participants

Dr. Tim Friesen, USDA-ARS Red River Agricultural Research Center Dr. Regina Redman, Adaptive Symbiotic Technologies Seattle, WA Dr. Rusty Rodriguez, Adaptive Symbiotic Technologies Seattle, WA Dr. Marilyn J. Roossinck, Pennsylvania State University Dr. Richard Todd, Kansas State University Dr. Nancy Keller, University of Wisconsin Dr. Mehdi Kabbage, University of Wisconsin Dr. Jeff Rollins, University of Florida Dr. Frank White, University of Florida Dr. Ken Obasa, University of Florida Dr. Yucheng Zhang, University of Florida Pei-Ling Yu, University of Florida Kamaldeep Bansal, University of Florida Zunaira Afzal, University of Florida Shaheen Bibi, University of Florida Patricia Soria, University of Florida

NCCC-307 Meeting Minutes - October 28-30, 2016, Gainesville, Florida

Friday October 28

6:30 pm – 7:20 pm – Informal mixer with dinner and drinks provided (Room 2564 Fifield Hall)

7:20 pm– 7:30 pm – Welcome and synopsis of NCCC-307 by Chair, Jeff Rollins

7:30pm– 8:30 pm –Key note speaker Jeffrey Rollins: “Concepts and usage of biotrophy and necrotrophy and how they shape our understanding of fungal-plant interactions”

Experimental and observational data guide our mechanistic understanding of host-pathogen compatibility. Efforts to conceptualize these understandings can however mask the complexity and nuanced differences that exist among given host-pathogen interactions. This is evident in the current trend to classify fungal pathogens within the “lifestyle” categories of (i) necrotroph, (ii) biotroph and (iii) hemi-biotroph. Experimental and observational data concerning the nature of various fungal-plant interactions traditionally placed within the categories were presented and lively discussed during the open panel discussion.

 8:30pm– 10:00 pm – Open panel discussions, questions and closing remarks

 

Saturday October 29

Morning Session:

9:00 am – 10:00 am – Mehdi Kabbage: “Identification of the molecular machinery of plant apoptotic processes for defense” University of Wisconsin.

10:00 am – 10:20 am – Richard Todd and Damien J. Downes: “Distinct modes of action for a fungal transcription factor regulating nitrogen and carbon metabolism, secondary metabolism and iron homeostasis”. Department of Plant Pathology, Kansas State University, Manhattan KS, USA.

The Aspergillus nidulans Zn(II)2Cys6 transcription factor TamA is widely conserved in Ascomycetes, including in fungal plant pathogens. TamA regulates the key nitrogen assimilation gene gdhA directly via its DNA binding domain, while acting as a coactivator of the global nitrogen GATA transcription factor AreA independent of its DNA-binding motif at other nitrogen utilization genes. gdhA encodes NADP-glutamate dehydrogenase, which catalyzes formation of glutamate from 2-oxoglutarate and ammonium. To determine the physiological role of TamA, and to identify the TamA DNA binding and coactivator genome-wide networks of regulated genes we compared using RNA-Seq global gene expression in tamA∆ complete loss-of-function and tamAC90L loss-of-DNA binding mutants. We show that TamA affects expression at some promoters as a DNA binding transcription factor, at some promoters independent of its DNA binding domain, and at others via both modes of action. Gene ontology networks analysis reveals that TamA regulates directly or indirectly genes for amide metabolism, nitrogen assimilation, carboxylic, oxo- and organic acid metabolism, transport, iron homeostasis, and secondary metabolism, as well as oxidoreductase genes. The oxidoreductase and nitrogen assimilation pathway targets suggest that TamA transcriptionally modulates levels of 2-oxoglutarate, which is an oxygen donor or co-substrate for oxidoreductases and the carbon skeleton for nitrogen assimilation to glutamate. In addition, TamA transcriptionally regulates multiple carbon metabolism genes involved in metabolism of precursors for biosynthesis of amino acids. Our data suggests that TamA coordinates homeostasis of carbon skeletons and amino donation from glutamate for biosynthesis of amino acids and compounds produced from amino acid precursors including iron siderophores and certain secondary metabolites.

10:20 am – 10:40 am –Break (coffee and snacks provided)

10:40 am – 11:40 am – Marilyn Rossinck, Vaskar Thapa, and Greg Turner:Using a Psuedogymnoascus destructans partitivirus to understanding White Nose Syndrome epidemiology”. Pennsylvania State University and the Pennsylvania Game Commission.

 Despite a decade of research many aspects of WNS are unclear, including how the fungus spreads among bats. To date no microsatellite data has been published for the fungus, and several genes show no variation, leading to the conclusion that the fungus is clonal throughout North America. We have characterized a virus, Psuedogymnoascus destructans partitivirus (PdPV) and analyzed a large collection of isolates from Pennsylvania and across North America, as well as a limited collection of European isolates, using specific RT-PCR of a variable region of the viral coat protein. PdPV is found in all of the North American Pd isolates analyzed to date, but is not found in the European isolates. Using the CP sequences for phylogenetic analysis we can trace the movement of the fungus based on viral variation. This extremely useful tool provides a rapid way to understand the epidemiology of WNS. We have also been able to cure the fungus of virus, and find changes in spore morphology and pigmentation in virus-free isolates.

 

11:40 am – 12:00 noon – Nancy Keller, Joseph E. Spraker Laura M. Sanchez, Tiffany M. Lowe, and Pieter C. Dorrestein: “Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues”. University of Wisconsin and University of California.

The global distribution of the plant pathogenic bacterium Ralstonia solanacearum shares an overlapping ecological range with many soil-borne and plant associated fungi. A primary objective of our work was to determine if chemical communication between R. solanacearum and associated fungi stimulates development of fungal-bacterial symbiosis. When exposed to a diffusible metabolite produced from R. solanacearum, fungi representing the broad span of higher fungi phyla (Ascomycota, Basidiomycota and Zygomycota) were found to differentiate in a conserved morphological manner. The exposed fungi produce thick-walled chlamydospores known to function as survival structures. R. solanacearum was found endophytically within a subset of these chlamydospores indicating a novel endofungal niche for this pathogenic bacterium. A previously unknown lipopeptide, ralsolamycin, was identified through mass spectrometry and proteomic analyses. This metabolite is the product of a nonribosomal peptide synthetase-polyketide synthase hybrid. Mutational inactivation of the encoding gene, rmyA, eliminated accumulation of ralsolamycin. The co-cultivation of mutants unable to synthesis ralsolamycin with fungi failed to induce chlamydospore development and fungal hyphae were contained fewer mutant bacteria compared to wild type. Our findings suggest that ralsolamycin plays a key role in the induction of chlamydospores and the process of bacterial invasion of hyphae. This form of bacterial-fungal symbiosis appears to provide a specific niche for R. solanacearum and the potential for increased survival for the partnering fungi.

 

Afternoon Session:

Noon – 6:00 pm - Break for lunch and hike/bike the La Chua trail for gator and other wildlife spotting. Informal discussion.

Dinner Session:

6:00 pm -8:00 pm – Group Dinner

Evening Session:

8:00 pm – 9:20 pm – Open panel questions and discussion

9:20 pm – 9:30 pm – Discussion of next NCCC-307 Meeting (Regina Redman) and final closing remarks (Jeff Rollins)

Meeting Conclusion

 

Sunday October 30

Goodbyes and travel day for NCCC-307 participants

Accomplishments

NCCC307 committee members reported near-term accomplishments in numerous and varied studies concerning the genetics and biochemistry of plant-fungal interactions during the past year. These include (1) An increasing knowledge of the presence of endophytic organisms including bacteria and viruses and their impacts on fungal biology and host-pathogen interactions. (2) Refinements on the understanding of the regulation and requirements of primary and secondary metabolism on host-pathogen interactions, and fungal growth, development and survival. (3) Elucidation of signal transduction pathways to understand the process and regulation of infection and host colonization (4) Identification, characterization and application of biotrophic and necrotrophic effectors in understanding fungal pathogenesis and host resistance and susceptibility. (5) Crop germplasm evaluation, disease resistance mapping, and cultivar release. (6) Identification of newly emerging and endemic pathogens, characterization of pathogen population diversity, fungal community interactions, and symbiotic interactions among fungi, plants, bacteria and viruses. These efforts have produced more than 108 peer-reviewed journal publications in the 2015-2016 reporting period.

Impacts

  1. The knowledge communicated by NCCC307 members has increased understandings of plant-fungal interactions in terms of host susceptibility, pathogen virulence mechanisms and fungal-plant interactions on multiple parasitic (mutualism to pathogenic) levels. In addition to the exchange of data among members of the group that have resulted in new ideas and concepts for grant proposals, this knowledge impacts the strategies used by crop breeders, crop managers and regulatory agencies for insuring the productivity and safety of plan-based agriculture products in the US.

Publications

  • Bignell E, Cairns TC, Throckmorton K, Nierman WC, Keller NP (2016) Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371(1709): (PMC5095546) 
  • Rosowski EE, Deng Q, Keller NP, Huttenlocher A (2016) Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish. J. Immunol. 197(12):4780-4790 
  • Clevenger KD, Bok JW, Ye R, Miley GP, Velk T, Chen C, Yang K, Gao P, Lamprecht M, Thomas PM, Islam MN, Wu CC, Keller NP, Kelleher NL (2016) Large scale discovery and deorphanization of natural products using fungal artificial chromosomes and untargeted metabolomics (FAC-MS). Planta Med. 81(S 01):S1-S381 
  • Knox BP, Blachowicz A, Palmer JM, Romsdahl J, Huttenlocher A, Wang CC, Keller NP, Venkateswaran K (2016) Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station. mSphere 1(5): (PMC5082629) 
  • Németh Z, Molnár ÁP, Fejes B, Novák L, Karaffa L, Keller NP, Fekete E (2016) Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans. Toxins (Basel) 8(12): (PMC5198170) 
  • Luo X, Affeldt KJ, Keller NP (2016) Characterization of the Far Transcription Factor Family in Aspergillus flavus. G3 (Bethesda) 6(10):3269-3281 (PMC5068947) 
  • Spraker JE, Sanchez LM, Lowe TM, Dorrestein PC, Keller NP (2016) Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME J 10(9):2317-30 (PMC4989320) 
  • Yeh HH, Ahuja M, Chiang YM, Oakley CE, Moore S, Yoon O, Hajovsky H, Bok JW, Keller NP, Wang CC, Oakley BR (2016) Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in Aspergillus nidulans Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. ACS Chem. Biol. 11(8):2275-84 
  • Henke MT, Soukup AA, Goering AW, McClure RA, Thomson RJ, Keller NP, Kelleher NL (2016) New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in Aspergillus nidulans. ACS Chem. Biol. 11(8):2117-23 (PMC5119465) 
  • Baccile JA, Spraker JE, Le HH, Brandenburger E, Gomez C, Bok JW, Macheleidt J, Brakhage AA, Hoffmeister D, Keller NP, Schroeder FC (2016) Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nat. Chem. Biol. 12(6):419-24 (PMC5049701) 
  • Drees KP, Palmer JM, Sebra R, Lorch JM, Chen C, Wu CC, Bok JW, Keller NP, Blehert DS, Cuomo CA, Lindner DL, Foster JT (2016) Use of Multiple Sequencing Technologies To Produce a High-Quality Genome of the Fungus Pseudogymnoascus destructans, the Causative Agent of Bat White-Nose Syndrome. Genome Announc 4(3): (PMC4929507) 
  • Zhao Y, He M, Xi Q, Ding J, Hao B, Keller NP, Zheng W (2016) Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst. Appl. Microbiol. Biotechnol. 100(9):4123-34 
  • Wang PM, Choera T, Wiemann P, Pisithkul T, Amador-Noguez D, Keller NP (2016) TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genet. Biol. 89:102-13 (PMC4789178) 
  • Wu G, Zhou H, Zhang P, Wang X, Li W, Zhang W, Liu X, Liu HW, Keller NP, An Z, Yin WB (2016) Polyketide Production of Pestaloficiols and Macrodiolide Ficiolides Revealed by Manipulations of Epigenetic Regulators in an Endophytic Fungus. Org. Lett. 18(8):1832-5 
  • Kerr SC, Fischer GJ, Sinha M, McCabe O, Palmer JM, Choera T, Lim FY, Wimmerova M, Carrington SD, Yuan S, Lowell CA, Oscarson S, Keller NP, Fahy JV (2016) FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog. 12(4):e1005555 (PMC4825926) 
  • Fischer GJ, Keller NP (2016) Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. J. Microbiol. 54(3):254-64 (PMC5107414) 
  • Soukup AA, Keller NP, Wiemann P (2016) Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi. Methods Mol. Biol. 1401:149-60 (PMC4773910) 
  • Barkal LJ, Theberge AB, Guo CJ, Spraker J, Rappert L, Berthier J, Brakke KA, Wang CC, Beebe DJ, Keller NP, Berthier E (2016) Microbial metabolomics in open microscale platforms. Nat Commun 7:10610 (PMC4742997) 
  • Song J, Zhai P, Zhang Y, Zhang C, Sang H, Han G, Keller NP, Lu L (2016) The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility. MBio 7(1):e01919-15 (PMC4791848) 
  • Throckmorton K, Lim FY, Kontoyiannis DP, Zheng W, Keller NP (2016) Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environ. Microbiol. 18(1):246-59 (PMC4750049) 
  • Keller NP (2015) Translating biosynthetic gene clusters into fungal armor and weaponry. Nat. Chem. Biol. 11(9):671-7 (PMC4682562) 
  • Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Düsterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJ, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kötter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nützmann HW, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, Xie Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gómez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng YQ, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJ, Ehling-Schulz M, Entian KD, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Höfte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon HJ, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Méndez C, Metsä-Ketelä M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Müller R, Neilan BA, Nett M, Nielsen J, O'Gara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet JL, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Süssmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glöckner FO (2015) Minimum Information about a Biosynthetic Gene cluster. Nat. Chem. Biol. 11(9):625-31 
  • Throckmorton K, Wiemann P, Keller NP (2015) Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins (Basel) 7(9):3572-607 (PMC4591646) 
  • Wang X, Wu F, Liu L, Liu X, Che Y, Keller NP, Guo L, Yin WB (2015) The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet. Biol. 81:221-8 
  • Albright JC, Henke MT, Soukup AA, McClure RA, Thomson RJ, Keller NP, Kelleher NL (2015) Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. ACS Chem. Biol. 10(6):1535-41 (PMC4475433) 
  • Zhao Y, Xi Q, Xu Q, He M, Ding J, Dai Y, Keller NP, Zheng W (2015) Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii. Appl. Microbiol. Biotechnol. 99(10):4361-72 
  • Macheleidt J, Scherlach K, Neuwirth T, Schmidt-Heck W, Straßburger M, Spraker J, Baccile JA, Schroeder FC, Keller NP, Hertweck C, Heinekamp T, Brakhage AA (2015) Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol. Microbiol. 96(1):148-62 (PMC4425693) 
  • Bok JW, Ye R, Clevenger KD, Mead D, Wagner M, Krerowicz A, Albright JC, Goering AW, Thomas PM, Kelleher NL, Keller NP, Wu CC (2015) Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics 16:343 (PMC4413528) 
  • Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y (2015) Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr. Biol. 25(1):29-37 (PMC4286458)
  • Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller NP, Martin F, Rouxel T, Lawrence CB (2015) Microbe-Independent Entry of Oomycete RxLR Effectors and Fungal RxLR-Like Effectors Into Plant and Animal Cells Is Specific and Reproducible. Mol. Plant Microbe Interact. 2015(1):51-56 
  • Thapa, V., G.G. Turner, S. Hafenstein, B.E. Overton, K.J. Vanderwolf, M.J. Roossinck. 2016. Using a novel partitivirus in Pseudogymnoascus destructansto understand the epidemiology of white-nose syndrome. PLOS Pathogens 12:e1006076.
  • Liu, Zhaohui; Holmes, Danielle J; Faris, Justin D; Chao, Shiaoman; Brueggeman, Robert S; Edwards, Michael C; Friesen, Timothy L. 2015. Necrotrophic effector‐triggered susceptibility (NETS) underlies the barley–Pyrenophora teres f. teres interaction specific to chromosome 6H. Molecular Plant Pathology. 16:188-200/
  • Campbell, A.S., R.C. Ploetz, and J.A. Rollins. 2016. Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen. Phytopathology. 107:70–74.
  • Doughan, B., and J.A. Rollins. 2016. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biology. 120:1105–1117.
  • Fan, H., G. Yu, Y. Liu, X. Zhang, J. Liu, Y. Zhang, J.A. Rollins, F. Sun, and H. Pan. 2016. An atypical forkhead containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. Molecular Plant Pathology.
  • Klosterman, S.J., J.A. Rollins, M.R. Sudarshana, and B.A. Vinatzer. 2016. Disease Management in the Genomics Era—Summaries of Focus Issue Papers. Phytopathology. 106:1068–1070.
  • Liang, X., E.W. Moomaw, and J.A. Rollins. 2015. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function. Molecular Plant Pathology. 16:825–836.
  • Smith, M.E., T.W. Henkel, and J.A. Rollins. 2015. How many fungi make sclerotia? Fungal Ecology. 13:211–220.
  • Wang, C., J. Yao, X. Du, Y. Zhang, Y. Sun, J.A. Rollins, and Z. Mou. 2015. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum1[OPEN]. Plant Physiol. 169:856–872.
  • Wang, N.-Y., K. Zhang, J.C. Huguet-Tapia, J.A. Rollins, and M.M. Dewdney. 2016. Mating Type and Simple Sequence Repeat Markers Indicate a Clonal Population of Phyllosticta citricarpa in Florida. Phytopathology. 106:1300–1310.
  • Firrincieli, A., R. Otillar, A. Salamov, J. Schmutz, Z. Khan, R.S. Redman, N.D. Fleck, E. Lindquist, I.V. Grigoriev, and S.L. Doty. 2015. Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol. 6:978. doi:10.3389/fmicb.2015.00978.
  • Yuan, Z., I.S. Druzhinina, J. Labbé, R. Redman, Y. Qin, R. Rodriguez, C. Zhang, G.A. Tuskan, and F. Lin. 2016. Specialized Microbiome of a Halophyte and its Role in Helping Non-Host Plants to Withstand Salinity. Sci Rep. 6:32467. doi:10.1038/srep32467.
  • Kabbage, M., Kessens, R., Dickman, MB. (2016) A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance. Microbial Cell. 3(5): 224 - 226
  • Li, Y., Kabbage, M., Liu, W., and Dickman, MB. (2016) Aspartyl Protease-Mediated Cleavage of BAG6 Is Necessary for Autophagy and Fungal Resistance in Plants. The Plant Cell. 28(1): 233-247
  • Piotrowski JS, Okada H, Lu F, Li S, Hinchman L, Ranjan A, Smith DL, Higbee AJ, Ulbrich A, Coon J, Deshpande R, Bukhman Y, McIlwain S, Ong I, Landick R, Boone C, Ralph J, Myers CL, Kabbage M, Ohya Y. (2015). The plant derived, antifungal agent poacic acid targets β-1,3-glucan. Proc Natl Acad Sci USA.112(12):E1490-7
  • Kabbage, M., Yarden, O., Dickman, M.B. (2015) Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Science. 233:53–60
  • Oliveira-Garcia, E. and Valent. 2015. How eukaryotic filamentous pathogens evade plant recognition, Current Opinion in Microbiology, doi:10.1016/j.mib.2015.06.012.
  • Shew, A.M., L.L. Nalley, D.M. Danforth, B.L. Dixon, R.M. Nayga, Jr., A.-C. Delwaide and Valent. 2015. Are all GMO’s the same? Consumer acceptance of cisgenic rice in India. Plant Biotechnology Journal, In Press.
  • Cruz, C. D., J. Kiyuna, W.W. Bockus, T.C. Todd, J.P. Stack and Valent. 2015. Magnaportheoryzae conidia on basal wheat leaves as a potential source of wheat blast inoculum. Plant Pathology, doi: 10.1111/ppa.12414.
  • Gong X., O. Hurtado, B. Wang, C. Wu, M. Yi, M.C. Giraldo, Valent, M. Goodin and M. Farman. 2015. pFPL vectors for high-throughput protein localization in fungi: detecting cytoplasmic accumulation of putative effector proteins. Molecular Plant-Microbe Interactions, 28: 107-121
  • Benoit, I., M. Zhou, A.V. Duarte, D.J. Downes, R.B. Todd, W. Kloezen, H. Post, A.J. Heck, A.M. Altelaar, and R.P. De Vries. 2015. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Scientific reports. 5:13592.
  • Williams, B., I. Njaci, L. Moghaddam, H. Long, M.B. Dickman, X. Zhang, and S. Mundree. 2015. Trehalose Accumulation Triggers Autophagy during Plant Desiccation. PLoS Genet. 11:e1005705. doi:10.1371/journal.pgen.1005705.
  • Figueroa, M., V.A. Manning, I. Pandelova, and L.M. Ciuffetti. 2015. Persistence of the Host-Selective Toxin Ptr ToxB in the Apoplast. Plant Microbe Interact. 28:1082–1090. doi:10.1094/MPMI-05-15-0097-R.
  • Hou, R., C. Jiang, Q. Zheng, C. Wang, and J.-R. Xu. 2015. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Plant Pathol. 16:987–999. doi:10.1111/mpp.12254.
  • Katz, M.E., R. Buckland, C.C. Hunter, and R.B. Todd. 2015. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation. Fungal Genetics and Biology. 83:10–18.
  • Kelly, A., H. Kistler, R. Proctor, and T. Ward. 2015. The origin, distribution, and evolution of Type A trichothecenes in the Fusarium graminearum species complex. In Meeting Abstract.
  • Zhao, Z., H. Liu, Y. Luo, S. Zhou, L. An, C. Wang, Q. Jin, M. Zhou, and J.-R. Xu. 2014. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci Rep. 4:6746. doi:10.1038/srep06746.
  • Al Souhail, Q., Y. Hiromasa, M. Rahnamaeian, M.C. Giraldo, D. Takahashi, B. Valent, A. Vilcinskas, and M.R. Kanost. 2016. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta. Developmental & Comparative Immunology. 61:258–268.
  • Cao, S., S. Zhang, C. Hao, H. Liu, J.-R. Xu, and Q. Jin. 2016. FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Sci Rep. 6:22333. doi:10.1038/srep22333.
  • Cruz, C.D., R.D. Magarey, D.N. Christie, G.A. Fowler, J.M. Fernandes, W.W. Bockus, B. Valent, and J.P. Stack. 2016a. Climate Suitability for Magnaporthe oryzae Triticum Pathotype in the United States. Plant Disease. 100:1979–1987.
  • Cruz, C.D., G.L. Peterson, W.W. Bockus, P. Kankanala, J. Dubcovsky, K.W. Jordan, E. Akhunov, F. Chumley, F.D. Baldelomar, and B. Valent. 2016b. The 2NS Translocation from Confers Resistance to the Pathotype of. Crop science. 56:990–1000.
  • David, R.F., M. Reinisch, F. Trail, L.C. Marr, and D.G. Schmale. 2016. Compression tests of Fusarium graminearum ascocarps provide insights into the strength of the perithecial wall and the quantity of ascospores. Fungal Genet. Biol. 96:25–32. doi:10.1016/j.fgb.2016.09.003.
  • Essarioui, A., H.C. Kistler, and L.L. Kinkel. 2016. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities. Plant and Soil. 409:329–343.
  • Farman, M., G. Peterson, L. Chen, B. Valent, P. Bachi, L. Murkock, D. Hershman, K. Pedley, M. Fernandes, and J. Bavaresco. 2016. The first case of Magnaporthe oryzae on wheat in the United States. Crop Science. 56:990–1000.
  • Gao, X., Q. Jin, C. Jiang, Y. Li, C. Li, H. Liu, Z. Kang, and J.-R. Xu. 2016. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum. PLoS Genet. 12:e1005973. doi:10.1371/journal.pgen.1005973.
  • Guo, L., A. Breakspear, G. Zhao, L. Gao, H.C. Kistler, J.-R. Xu, and L.-J. Ma. 2016a. Conservation and divergence of the cyclic adenosine monophosphate–protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides. Molecular plant pathology. 17:196–209.
  • Guo, L., A. Breakspear, G. Zhao, L. Gao, H.C. Kistler, J.-R. Xu, and L.-J. Ma. 2016b. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides. Plant Pathol. 17:196–209. doi:10.1111/mpp.12272.
  • Guo, L., G. Zhao, J.-R. Xu, H.C. Kistler, L. Gao, and L.-J. Ma. 2016c. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum. New Phytol. 211:527–541. doi:10.1111/nph.13912.
  • Hofstad, A.N., T. Nussbaumer, E. Akhunov, S. Shin, K.G. Kugler, H.C. Kistler, K.F. Mayer, and G.J. Muehlbauer. 2016. Examining the transcriptional response in wheat near-isogenic lines to infection and deoxynivalenol treatment. The Plant Genome. 9.
  • Ipcho, S., T. Sundelin, G. Erbs, H.C. Kistler, M.-A. Newman, and S. Olsson. 2016. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs). G3: Genes| Genomes| Genetics. 6:1585–1595.
  • Jiang, C., J.-R. Xu, and H. Liu. 2016a. Distinct cell cycle regulation during saprophytic and pathogenic growth in fungal pathogens. Genet. 62:185–189. doi:10.1007/s00294-015-0515-9.
  • Jiang, C., C. Zhang, C. Wu, P. Sun, R. Hou, H. Liu, C. Wang, and J.-R. Xu. 2016b. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Microbiol. 18:3689–3701. doi:10.1111/1462-2920.13279.
  • Kelly, A.C., R.M. Clear, K. O’Donnell, S. McCormick, T.K. Turkington, A. Tekauz, J. Gilbert, H.C. Kistler, M. Busman, and T.J. Ward. 2015. Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genetics and Biology. 82:22–31.
  • Kistler, H.C., and K. Broz. 2015. Cellular compartmentalization of secondary metabolism. Frontiers in microbiology. 6:68.
  • LeBlanc, N., L.L. Kinkel, and H.C. Kistler. 2015. Soil fungal communities respond to grassland plant community richness and soil edaphics. Microbial ecology. 70:188–195.
  • Li, C., S. Cao, C. Zhang, Y. Zhang, Q. Zhang, J.-R. Xu, and C. Wang. 2016a. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae. Plant Pathol. doi:10.1111/mpp.12523.
  • Li, C., M. Melesse, S. Zhang, C. Hao, C. Wang, H. Zhang, M.C. Hall, and J.-R. Xu. 2015. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Microbiol. 98:770–786. doi:10.1111/mmi.13157.
  • Li, M., C. Jiang, Q. Wang, Z. Zhao, Q. Jin, J.-R. Xu, and H. Liu. 2016b. Evolution and Functional Insights of Different Ancestral Orthologous Clades of Chitin Synthase Genes in the Fungal Tree of Life. Front Plant Sci. 7:37. doi:10.3389/fpls.2016.00037.
  • Li, Y., G. Wang, J.-R. Xu, and C. Jiang. 2016c. Penetration Peg Formation and Invasive Hyphae Development Require Stage-Specific Activation of MoGTI1 in Magnaporthe oryzae. Plant Microbe Interact. 29:36–45. doi:10.1094/MPMI-06-15-0142-R.
  • Liang, J., L. Lofgren, Z. Ma, T.J. Ward, and H.C. Kistler. 2015. Population subdivision of Fusarium graminearum from barley and wheat in the Upper Midwestern United States at the turn of the century. Phytopathology. 105:1466–1474.
  • Liu, H., Q. Wang, Y. He, L. Chen, C. Hao, C. Jiang, Y. Li, Y. Dai, Z. Kang, and J.-R. Xu. 2016. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res. 26:499–509. doi:10.1101/gr.199877.115.
  • Liu, H., S. Zhang, J. Ma, Y. Dai, C. Li, X. Lyu, C. Wang, and J.-R. Xu. 2015. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum. PLoS Pathog. 11:e1004913. doi:10.1371/journal.ppat.1004913.
  • Malaker, P.K., N.C.D. Barma, T.P. Tiwari, W.J. Collis, E. Duveiller, P.K. Singh, A.K. Joshi, R.P. Singh, H.-J. Braun, G.L. Peterson, and others. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype Triticum in Bangladesh. Plant Disease.
  • Manning, V.A., and L.M. Ciuffetti. 2015. Necrotrophic effector epistasis in the Pyrenophora tritici-repentis-wheat interaction. PLoS ONE. 10:e0123548. doi:10.1371/journal.pone.0123548.
  • Marroquin-Guzman, M., and R.A. Wilson. 2015. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLoS Pathog. 11:e1004851.
  • Qi, L., Y. Kim, C. Jiang, Y. Li, Y. Peng, and J.-R. Xu. 2015. Activation of Mst11 and Feedback Inhibition of Germ Tube Growth in Magnaporthe oryzae. Plant Microbe Interact. 28:881–891. doi:10.1094/MPMI-12-14-0391-R.
  • Qin, J., G. Wang, C. Jiang, J.-R. Xu, and C. Wang. 2015. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep. 5:8504. doi:10.1038/srep08504.
  • Quesada-Ocampo, L.M., J. Al-Haddad, A.C. Scruggs, C.R. Buell, and F. Trail. 2016. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Phytopathology. 106:920–927. doi:10.1094/PHYTO-09-15-0199-R.
  • Sharpee, W., Y. Oh, M. Yi, W. Franck, A. Eyre, L.H. Okagaki, B. Valent, and R.A. Dean. 2016. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. Molecular Plant Pathology.
  • Shew, A.M., L.L. Nalley, D.M. Danforth, B.L. Dixon, R.M. Nayga, A.-C. Delwaide, and B. Valent. 2016. Are all GMOs the same? Consumer acceptance of cisgenic rice in India. Plant biotechnology journal. 14:4–7.
  • Song, Z., D. Schlatter, P. Kennedy, L.L. Kinkel, H.C. Kistler, N. Nguyen, and S.T. Bates. 2015. Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils. PloS one. 10:e0127234.
  • Varga, E., G. Wiesenberger, C. Hametner, T.J. Ward, Y. Dong, D. Schöfbeck, S. McCormick, K. Broz, R. Stückler, R. Schuhmacher, and others. 2015. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environmental microbiology. 17:2588–2600.
  • Wang, G., G. Li, S. Zhang, C. Jiang, J. Qin, and J.-R. Xu. 2015. Activation of the signalling mucin MoMsb2 and its functional relationship with Cbp1 in Magnaporthe oryzae. Microbiol. 17:2969–2981. doi:10.1111/1462-2920.12847.
  • Yang, C., H. Liu, G. Li, M. Liu, Y. Yun, C. Wang, Z. Ma, and J.-R. Xu. 2015. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. Microbiol. 17:2762–2776. doi:10.1111/1462-2920.12747.
  • Yin, Z., H. Liu, Z. Li, X. Ke, D. Dou, X. Gao, N. Song, Q. Dai, Y. Wu, J.-R. Xu, Z. Kang, and L. Huang. 2015. Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark. New Phytol. 208:1202–1216. doi:10.1111/nph.13544.
  • Yun, Y., Z. Liu, Y. Yin, J. Jiang, Y. Chen, J.-R. Xu, and Z. Ma. 2015. Functional analysis of the Fusarium graminearum phosphatome. New Phytol. 207:119–134. doi:10.1111/nph.13374.
  • Todd, R.B. 2016. 11 Regulation of Fungal Nitrogen Metabolism. In Biochemistry and Molecular Biology. Springer. 281–303.
  • Torres, M.F., N. Ghaffari, E.A.S. Buiate, N. Moore, S. Schwartz, C.D. Johnson, and L.J. Vaillancourt. 2016. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genomics. 17:202. doi:10.1186/s12864-016-2546-0.
  • Van Dam, P., L. Fokkens, S.M. Schmidt, J.H. Linmans, H.C. Kistler, L.-J. Ma, and M. Rep. 2016. Effector profiles distinguish formae speciales of Fusarium oxysporum. Environmental Microbiology. 18:4087–4102.
  • Wang, C., J.-R. Xu, and H. Liu. 2016a. A-to-I RNA editing independent of ADARs in filamentous fungi. RNA Biol. 13:940–945. doi:10.1080/15476286.2016.1215796.
  • Wang, Z., N. Li, J. Li, J.C. Dunlap, F. Trail, and J.P. Townsend. 2016b. The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. MBio. 7:e02148. doi:10.1128/mBio.02148-15.
  • Williams, A.H., M. Sharma, L.F. Thatcher, S. Azam, J.K. Hane, J. Sperschneider, B.N. Kidd, J.P. Anderson, R. Ghosh, G. Garg, and others. 2016. Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC genomics. 17:191.
  • Xu, C., H. Chen, M.L. Gleason, J.-R. Xu, H. Liu, R. Zhang, and G. Sun. 2016. Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ectophytic parasite. Sci Rep. 6:22926. doi:10.1038/srep22926.
  • Zhang, N., J. Luo, A.Y. Rossman, T. Aoki, I. Chuma, P.W. Crous, R. Dean, R.P. de Vries, N. Donofrio, K.D. Hyde, M.-H. Lebrun, N.J. Talbot, D. Tharreau, Y. Tosa, B. Valent, Z. Wang, and J.-R. Xu. 2016a. Generic names in Magnaporthales. IMA Fungus. 7:155–159. doi:10.5598/imafungus.2016.07.01.09.
  • Zhang, S., C. Jiang, Q. Zhang, L. Qi, C. Li, and J.-R. Xu. 2016b. Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae. Microbiol. 18:3768–3784. doi:10.1111/1462-2920.13315.
  • Zheng, D., Y. Wang, Y. Han, J.-R. Xu, and C. Wang. 2016a. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep. 6:24824. doi:10.1038/srep24824.
  • Zheng, H., S. Chen, X. Chen, S. Liu, X. Dang, C. Yang, M.C. Giraldo, E. Oliveira-Garcia, J. Zhou, Z. Wang, and others. 2016b. The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae. Frontiers in Plant Science. 7.
  • Arabidopsis B-cell lymphoma2 (Bcl-2)-associated athanogene 7 (BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29. Loop.
Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.