W5168: Environmental and Genetic Determinants of Seed Quality and Performance

(Multistate Research Project)

Status: Active

Homepage

The need, as indicated by stakeholders:


Our proposed goals are informed by our close working interaction with our stakeholders who produce and use high-quality seeds to generate food, feed, biofuel, beverages, natural products, fiber, and resources for land management/restoration. Our stakeholders encompass non-profits, academic, commercial, and government scientists,  agronomists, horticulturalists, extension agents, and seed industry leaders, who ultimately deliver high-quality seeds and the associated, validated knowledge base to growers. Our stakeholders indicated the need for maintaining or increasing seed quality and asked for new traits that can be incorporated into existing crops and wild species. Likewise, they asked for the development of new germplasm for novel agricultural and restoration endeavors. Our goals for the proposed project focus on developing a broad understanding of how genetic and environmental mechanisms affect seed processes and capitalizing on this knowledge base and new technologies to enhance seed quality for our stakeholders. Stakeholder feedback and an assessment of the existing multistate program (see below) indicate that we are uniquely positioned to coordinate the necessary research and provide the needed information to our stakeholders. It is clear that a broad, systems-based approach is necessary to understand the basic genetic mechanisms that govern seed developmental processes and how these processes are modified by environmental cues and stresses to affect seed quality. We plan to capitalize on our existing collaborations, substantial knowledge base, and new technologies (some of which our members have generated) to increase seed quality and performance and expand seed sourcing as desired by growers. The long-term goal of our multistate project is to help maintain the high standards and competitiveness of the U.S. seed industry for new and existing crops and species of restoration interest.


The importance of the work, and what the consequences are if it is not done:


Our proposed project will enhance seed quality and performance in a changing climate and expand sources for wild species to meet the competitive demands of U.S. agriculture. Poor seed quality causes yield reduction with associated economic consequences of failed ecosystem restorations, increased agricultural inputs, higher food prices,  localized commodity shortages, and reduced exports. Basic, species-level research is needed to develop the knowledge required to consistently generate high-quality seed for all plant plant species, including wild species, plants already in production, or those that are under development for agricultural and ecological utilization. This information ensures that growers and producers have the best chance of providing a high-quality product to the consumer. This research requires a systematic approach that can only be delivered by a broad and cooperative group of scientists focused on genetic bases of seed- and seedling-related processes, and development of tailored technologies to enhance these processes in target seed crops. Our proposed multistate project is the only vehicle that can facilitate such research. We know of no other agency or organization that integrates the depth and breadth of expertise to tackle these goals with relevance to the large array of species grown in the U.S. 


The technical feasibility of the research:


We have a proven history of carrying out cutting-edge research on the  genetic bases of seed development, seed quality, seed dormancy, germination, and stand establishment (Objective 1).  We have also contributed substantially to utilization of new technologies to assess and manipulate traits to enhance seed quality (Objective 2).These objectives synergize  to meet stakeholder needs by addressing the continuum from basic to applied research questions. We are one of the longest-running multistate working groups in the USDA (starting as a Western Regional project in 1983). Our members are internationally recognized authorities on seed science as demonstrated by our publications, and scientific- and outreach-focused activities described below. We have a proven record of carrying out collaborative research within the present multistate project group and with other cross-disciplinary groups. Given the breadth of expertise and research productivity of the proposed project members (see Attachments), we are confident that we can fully achieve the project objectives.


The advantages of doing the work as a multistate effort:


To address seed quality on a national level, it is necessary to draw on the expertise of specialized research scientists across many states and geographic regions. In the past, our project has played a critical role in coordinating a diversity of new seed biology projects throughout the U.S, an activity we plan to continue. Furthermore, we have provided the necessary scientific and organizational skills and expertise to examine seed biology from diverse perspectives, from the molecular to the whole plant to the population level (when considering genetic variation between seed sources) and community level (when combining different species to maximize different facets of biodiversity).


Considering the documented decline in the number of seed scientists graduating from land-grant universities, recruiting and training the next generation of seed scientists and technologists is integral to our multistate effort and to providing the U.S. seed industry with employees trained in seed science (TeKrony, 2006). Seed industries directly rely on the research and training provided by land-grant universities to help them address complex problems that impact product development and, therefore, profitability. The proposed multistate project will continue our current work of integrating the individual activities of our members with all information gained from current state programs across a wide range of species to address problems faced by seed producers and users nationwide. We envision this proposed multistate project will serve as a unifying mechanism for all seed science research in the U.S. 


What the likely impacts will be from successfully completing the work:


We anticipate the development of solutions that provide an abundant supply of high-quality seeds for agriculture and restoration as a means of maintaining and improving food security and environmental health for the United States. We will generate new fundamental knowledge about genetic mechanisms underlying seed development, germination, dormancy, and storability. We will help translate this information and apply new technologies to enhance seed quality and performance for growers. Our project will also contribute to a clearer understanding of how environmental factors affect seed performance in natural and agricultural settings, information that is needed to ensure the continued vitality of native plant populations and the productivity of cropping systems. Finally, the combination of the basic and applied objectives will provide training opportunities for the next generation of seed scientists.




Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.