
W6: Maximizing Conservation and Utilization of Plant Genetic Resources and their Information
(Multistate Research Project)
Status: Active
Homepage
The need, as indicated by stakeholders:
Humanity cannot survive without agriculture. Improving agricultural efficiency and sustainability will play a vital role towards improving global food security considering global population growth and projected negative impacts affiliated with climate change. To meet this challenge, plant breeding and other plant science research fields rely on the diversity of discoverable traits and genes in agriculturally important plant genetic resource (PGR) collections. Plant genetic resources drive innovations and are used to develop new crops, to find new uses for existing crops or to develop improved varieties that produce food, fiber, forage, fuel, ornamentals, medicine or are used for industrial and/or restoration purposes. These collections also provide key sources of genetic diversity for today’s homogeneous agricultural crop production systems. Many crop germplasm collections, including wild relatives, are being evaluated as potential sources of traits for adaptation in cultivated crops. Also, modern biotechnological approaches in areas of genomics have prompted renewed interest in use of germplasm collections for trait discovery. Innovations in basic and applied plant science research at public, private and non-profit organizations nationally and internationally are often spurred by access to these genetic resources.
The Western Regional Plant Introduction Station (WRPIS) of the National Plant Germplasm System (NPGS) is one of four originally established sites in the U.S. dedicated to the conservation and use of plant germplasm vital to agriculture. Established in 1947 in Pullman, WA as a joint undertaking by Washington State University (WSU) and U.S. Department of Agriculture (USDA), the WRPIS has a long history of acquisition, maintenance, characterization, evaluation and distribution of PGR and their associated information. Support for the WRPIS has come from federal appropriations and through the partnership with the Western Regional (W6) Multistate Hatch-funded Research Project. In 2020, the NPGS managed 595,624 accessions corresponding to 15,979 plant species. Within the NPGS, the WRPIS collections hold a significant proportion of the U.S. and world’s germplasm representing cultivated crops and their wild relatives. Primary collections here include cool season food legumes (e.g., pea, lentil faba bean and chickpea), turf and forage cool season grasses (e.g., fescue and bluegrass), temperate forage legumes (e.g., alfalfa and clover), common bean (Phaseolus sp.), horticultural crops (e.g., lettuce, sugar beets, and garlic) and U.S. natives used in restoration along with many other important plant species.
The impact of these diverse collections at WRPIS can be partially demonstrated by the demand for their use. Over the past five years (2015-2019), global stakeholders have requested and received 122,544 distributions in over 3,616 separate requests. Distribution to and utilization of germplasm by researchers and educators in the Western Region in the past five years was for 1,809 (~50% of total) requests and 44,133 (~36%) individual items. These distributions were to public plant breeders and other scientists for research, development and education purposes (e.g., graduate student research) at Land-Grant Universities, other public/private research institutions, USDA sites, non-profit organizations and private industry.
Support for research and service efforts provided by the WPRIS comes from stakeholders. The Plant Breeding Coordinating Committee (PBCC), which represents all U.S. public breeding programs, made the following declaration about access to germplasm in its 2020 renewal document: “Genetic diversity serves as the basis for development of varieties that are critical for providing livelihood resilience and food security. Therefore, it is essential that the U.S. and international communities conserve, characterize, and provide access to diverse germplasm for plant breeding.” Mark Smith, President, North American Alfalfa Improvement Conference (NAAIC), recently stated “Alfalfa is the third most valuable field crop in the U.S. and is a leading agricultural enterprise in many western states. It is a priority of NAAIC to improve performance (yield) and quality of modern-day varieties. Breeding with traits identified in the genetically diverse alfalfa collections of WRPIS is a way to achieve this goal.”. The NAAIC is a community of public/private sector scientists and educators that promotes the exchange of information among researchers involved in alfalfa improvement and utilization around the world.
The proposed project aligns well with national and international agricultural sustainability goals and action plans. These include, among others, the United Nations Food and Agriculture Organizations Sustainable Development Goal 2.5.1 addressing conservation of PGR for food and agriculture and the USDA National Program 301 Action Plan. At the same time, the project is an active collaborative partnership in finding solutions to key issues affecting the Western Region as outlined in the Western Region stakeholder-derived document entitled, “The Western Perspective and the Western Agenda”. In this regard, the WRPIS provides support to the food production, food security and horticultural industries, as well as for conservation and restoration of natural resources in the Western Region.
The importance of the work, and what the consequences are if it is not done.
Plant breeders and other researchers rely on the diversity in agriculturally important crop PGR collections for the identification and sourcing of traits conferring disease and insect resistance, nutritional qualities and yield. As an example, leafhopper insect resistance was identified in alfalfa (Medicago sativa L.) germplasm accessions held at the WRPIS for integration into commercial varieties. A proportion of modern alfalfa varieties carrying this trait has helped reduce its insecticide use, thus benefiting the environment, human health and producers’ economic gain. Alfalfa is the third largest crop (by acreage) in the U.S. and the alfalfa producers of the Western Region states lead in supplying the national and export forage industry markets. Another example of the impact that WRPIS collections have on the U.S. agriculture economy comes from dry pea (Pisum sativum L.), an important vegetable and grain crop with significant production in Western Region states. The nation’s dry pea crop has seen increased production because of its use as an alternate source of plant-based protein concentrates, and consumer benefits come from its high nutritional value (e.g., proteins and phytochemicals). In the last three years distributions for pea germplasm for breeding high protein varieties has increased dramatically to 22,847 packets from the collection of 6,192 accessions. Further, the ‘Hampton’ pea variety released by public breeders in the state of Washington in 2016 has resistance to two important viruses (Pea enation mosaic virus and Bean leafroll virus), both traits sourced from WRPIS germplasm. When viral disease pressure is high, a pea crop cannot be produced without these disease resistance traits. While disease and insect pests limit production, factors affiliated with climate change can also have significant adverse impacts. The WRPIS collections are an essential resource to meet these challenges and are accessed and evaluated for sources of traits/genes associated with abiotic stress response to drought, heat and salinity in order to produce climate-ready crops with improved resiliency.
Many ongoing diverse research projects, a few of which are highlighted below, depend on access to the WPRIS PGR collections. An established project that continues to rely heavily on WRPIS germplasm has been the Cornell University-led NE1710 Multistate Research Project entitled “Improving Forage and Bioenergy Crops for Better Adaptation, Resilience and Flexibility”. This national project has released grass and legume germplasm with improved disease/insect resistance, vigor and other agronomic traits derived from WRPIS germplasm used to broaden the genetic base of breeding programs. Also, WRPIS continues to collaborate on a long-term (>15 years) federal government Inter-Agency project aimed at the conservation and use of native PGR for landscape restoration and improving agroecosystems. This Bureau of Land Management (BLM)-led effort has enabled close to 20,000 native plant collections to become part of the WRPIS and NPGS holdings. These collections and their associated information are cataloged, conserved and available for restoration research efforts, especially targeting western landscapes affected by fires and other natural or human-induced impacts.
Although plant breeders are WRPIS’s primary stakeholders, the need for access to germplasm and its associated information comes from many other areas. Collections of model plant species include Barrel medic, Medicago truncatula Gaertn., one of the first plants with a fully sequenced and published genome. The M. truncatula collection has been useful for research on legume functional genomics and nitrogen fixation. A large collection of purple false brome, Brachypodium distachyon (L.) P.Beauv., T-DNA insertion lines, used in understanding grass species gene function, is also managed by the WRPIS. Discoveries in B. distachyon genetic resources have led to improvement of related food crops like wheat (Triticum aestivum L.) and biofuels crops like switchgrass (Panicum virgatum L.). Over the years, WRPIS germplasm has been requested for a broad range of uses including, but not limited to, agronomy, anthropology, bioremediation, botany, taxonomy, genetics, physiology, entomology, plant pathology, ecology, restoration research, repatriation and for educational and demonstration programs.
Significant effort has gone into assembling and managing plant germplasm collections at the WRPIS. Some of the first plant introductions (PI) held in Pullman date back to the late 1800’s with extensive collection growth since then. Today’s, collections are extremely diverse with 1,133 genera and 4,996 species primarily representing introduced (i.e., non-native) cultivated crop species and many of their wild relatives, vital to U.S. agriculture. Active curation of these collections involves the characterization and evaluation of accessions as well as critical regeneration activities. As collections have expanded over time, so have the capacities for managing information. Comprehensive accession-associated passport, characterization (phenotypic/genotypic) and evaluation data can be freely, publicly accessed with browser-based software via the Germplasm Resources Information Network (GRIN)-Global System (GG) database. Along with germplasm custody, the long-term management of evaluation and genomic data associated with accessions is an important and significant effort, with information access almost as valuable as the germplasm, as it informs selection for research objectives.
If current management of the WRPIS collections were not maintained, future access to its PGR collections will be restricted. Access to the germplasm would be limited due to diminishing quantities and quality of germplasm stock, and regeneration could not be maintained in a timely fashion. Further, any loss of germplasm in the collections most likely would be permanent as it is possible that such germplasm no longer exists where originally sourced. Notably, most WRPIS collections are not native to the U.S. and international access is becoming more restricted. Consequently, loss of access to germplasm could have dire consequences locally, regionally and globally as the need for increased and sustainable agricultural productivity might not be met. PGR have a significant positive impact on economic, environmental and social aspects of our society and its future, and if lost most likely cannot be recreated. Therefore, the collections held by the WRPIS need to be conserved in perpetuity in order to realize their potential for future development.
The technical feasibility of the research.
For over 70 years the WRPIS has been successful in its service and research missions, providing access to PGR and associated information for stakeholders. This achievement comes from fiscal and in-kind support and the collective efforts of both federal and state entities. The WRPIS relies on extensive laboratory, greenhouse, field and office space, much of which is provided as in-kind support from WSU’s College of Agricultural, Human and Natural Resource Sciences (CAHNRS). Approximately 5,000 ft2 (~29,000 ft3) of dedicated cold storage facilities (4oC and -18oC), along with accompanying infrastructure for germplasm distributions, are at the core of the WRPIS service functions. The WRPIS relies on specialized technical equipment and facilities for germinating, threshing and seed cleaning. Research farms and other vital resources that contribute to aspects of the day-to-day operations are also provided at the Central Ferry, WA research farm and the WSU, Irrigated Agriculture Research and Extension Center (IAREC) in Prosser, WA.
The proposed project is attainable because the WRPIS counts on extensive, collective technical and advisory expertise. The WRPIS’s five curatorial programs are led by dedicated scientific and technical personnel with many years of PGR management experience. The station’s research scientists lead programs providing support to curatorial activities including maintenance, characterization, evaluation, genetic improvement and pest management. Administrative and information technology support, along with research farm staff, also play key roles in the WRPIS mission. The WRPIS relies on research, service and clerical support from its Administrative Advisor and their corresponding office. Also providing consultative roles are the Regional Technical Advisory Committee (RTAC) and 10 Crop Germplasm Committees (CGC). The RTAC is comprised of state representatives at Western Region Land-Grant Universities with research programs associated with and dependent on WRPIS genetic resources. Members of the CGCs include NPGS stakeholders with diverse PGR subject matter expertise. Scientific personnel at the WRPIS have a long history and network of productive project collaborations (e.g., WSU) providing valuable input and impact.
Managing critical information associated with NPGS genetic resources is accomplished with GRIN-Global software. This relational database software was developed by the NPGS and international collaborators to specifically manage passport, inventory, taxonomy, characterization, evaluation, distribution data, digital images and other records, genebank workflows, and is continuously enhanced. Characterization and evaluation data collected on WRPIS germplasm can be generated in-house or via collaborations. Many of these accessions-associated datasets are produced by Western Region and other collaborating scientists who provide data back to WRPIS curatorial programs to be curated long-term and made publicly available. GRIN-Global software enhancements by dedicated NPGS software development teams continue to increase system capacity and functionality (i.e., extensibility); the WRPIS helps implement these.
The WRPIS also counts on support from sites like the USDA National Laboratory for Genetic Resources Preservation (NLGRP) in Fort Collins, CO, which holds a safety backup inventory for over 90% of WRPIS PGR. As germplasm enters the WRPIS collections, or as older seed inventories are regenerated, safety backup samples are deposited with NLGPR. The NLGRP also coordinates backup samples at the Svalbard Global Seed Vault, in Longyearbyen, Norway. The National Germplasm Resources Laboratory (NGRL) in Beltsville, MD assists by hosting GRIN-Global data and software development team. The NGRL also coordinates plant germplasm collection and exchanges through its Plant Exchange Office (PEO) and aids in the safe introduction of quarantined germplasm.
The advantages of doing the work as a multistate effort.
The proposed collaborative has a long, successful history of implementation with wide-ranging impacts to the Western Region, the nation and the world. Support for this Multistate Research Project has come from the 73-year partnerships between Washington State University, the Western Association of Agricultural Experiment Stations Directors (WAAESD) and the NPGS. Of benefit to the community is guaranteed access to diverse plant germplasm collections by those with research or education objectives.
Centralized management of genetic resources in one state/location for the region avoids potential duplication of efforts at multiple sites. Although the WRPIS main administrative unit is in Pullman, the ability to conduct regenerations, characterizations and evaluations at multiple sites (i.e., Pullman, Central Ferry, Prosser) means that relevant data is applicable to similar crop growing environments throughout the region. Given its colocation on the WSU campus and proximity to the University of Idaho in Moscow, ID, research collaborations with supportive programs at these institutions are common. Many WRPIS scientists also frequently engage with other regional, national and international efforts to provide data, analyses and research outputs that benefit entire germplasm stakeholder communities. Since this is a regional multistate project, the RTAC plays an important role in advising and providing a channel for communicating individual, regional, and state needs in the context of the WRPIS project management.
Likely impacts from successfully completing the work.
Successfully completing the proposed project will benefit plant science research and educational stakeholder communities by providing continued access to valuable plant genetic diversity and associated information. Optimized protocols for regenerating, as well as for testing and eliminating diseases from germplasm, will help preserve genetic resources long-term and increase availability for safe distribution. The proposed plans include the addition of unique genetic diversity to fill gaps for priority crop species, making this ‘new’ unexplored germplasm available. In-house and external germplasm characterizations and evaluations will provide substantial data that will be linked to accessions in the collection. Access to this data benefits end-users by helping stakeholders refine germplasm request choices. Genotyping PGR collections to study population structure would identify redundancies for consolidation or justification, and potential gaps to target new germplasm acquisition. At the same time, marker associations could precisely identify genic regions associated with or conferring traits and help advance productivity and quality of plant breeding efforts. Past W6 project achievements have clearly demonstrated its ability to provide continued access to, and use of, WRPIS PGR and associated information to stakeholder communities in the Western Region, the nation, and the world (Attachment 1 & 2). These activities emphasize and justify the project’s necessity. Beneficiaries of the proposed service and research include breeders, the plant science and other research communities, and agricultural producers. Furthermore, the general public profits from these efforts by having continued access to safe, nutritious, high-quality agricultural goods.