NE_OLD9: Conservation and Utilization of Plant Genetic Resources

(Multistate Research Project)

Status: Inactive/Terminating

Homepage

The Need: America's abundant and inexpensive supply of food and fiber is based on a productive and progressive agricultural system. The foundation for this productivity has been based on scientific knowledge and exploitation of useful genetic diversity for developing new, higher quality cultivars that can resist pests, diseases, and environmental stresses. However, genetic diversity for various crops is diminishing, in a large part due to the extensive use of modern cultivars with genetic uniformity but a noteworthy lack of genetic diversity for developing new traits and combating against new biotic and abiotic stresses.


The genes that are needed to provide a continued source of new varieties that produce higher yields with better quality and nutritional value, and better withstand pests, diseases, and abiotic stresses can only come from diverse plant germplasm. Most of the food crops important in the American diet have their origins in other parts of the world. Genetic diversity of plant species has evolved in centers of origin wherever this has occurred in the world. This source of different genes continues to be essential for plant breeders and other scientists to breed new varieties that are important to American consumers today. To meet this need and sustain the future success of American agriculture, the United States Department of Agriculture, Agricultural Research Service (USDA, ARS) has established a National Plant Germplasm System (NPGS) in which hundreds of thousands of plant germplasm collections are preserved. USDA-ARS Plant Genetic Resources Unit (PGRU) at Geneva, New York is a vital part of this system and preserves the germplasm of apple, grape, tart cherry, Cruciferous vegetables, onion, tomato and many others.


Continuing safeguarding these germplasm is critical to meeting future production challenges of these crops in the United States, including many U.S. northeastern states where these crops are a key source of income for farmers. Many northeastern State Agricultural Experiment Stations (SAESs) have research and extension responsibilities for these valuable commodities and access to critical germplasm resources is essential for progress in research and crop improvement of these crops. While preserving this germplasm is critical, evaluation and characterization of this germplasm and making it more accessible to breeders and researchers are also important.


There are ongoing efforts nationwide to promote increased consumption of fruits and vegetables because of their nutritional and therapeutic value to the human diet. PGRU will contribute to these efforts because many fruit and vegetables we preserve, such as apples, grapes, broccoli, onion and tomato, contain certain compounds, such as polyphenolics or glucosinolates, that have been linked to reduced risk of various chronic conditions or life-threatening diseases. PGRU can further enhance the success of these efforts by evaluating, characterizing and identifying various plant trait attributes with health benefits in these germplasm. This NE-9 Project has been an important source of funding for sustaining the PGRU germplasm activities in the past and it will become even more important in the future.


Proposed Objectives: Objectives of this project are directed towards providing the required germplasm to assure stable and sustainable production of nutritious fruits and vegetables in the Northeastern United States and worldwide:


1. Strategically expand the genetic diversity and improve associated information for the fruit and vegetable genebank collections held at the PGRU in Geneva, NY for use in the Northeast, the United States and the World.

2. Conserve and regenerate the accessions in the genebank to ensure long-term availability of this germplasm to distribute for research and crop improvement to meet the evolving needs of the United States and the World. This is especially important in the face of climate change and increasingly limited water resources for increased production of nutritious food products. This requires ensuring proper regeneration to maintain disease free, high viability seed and clonal propagules while maintaining trueness to type of the 20,671 lines maintained at Geneva, NY.

3. Develop better collection and conservation strategies for this germplasm on the basis of their genetic diversity patterns, geographic distribution and phylogenetic and taxonomic relationships with closely related species.

4. Increase the utilization efficiency of the germplasm collections through phenotypic and genotypic characterization and evaluation of the germplasm held in the collections for high-priority traits, especially resistances to biotic and abiotic stresses and nutritional traits.

5. Develop novel germplasm that integrates diverse useful genes from various resources and breed, release, maintain, and evaluate improved germplasm and cultivars.


Note: Objectives 3-5 require the cooperation of collaborators. Forging the links between PGRU and reliable and productive cooperators should be viewed as part of these objectives.


Importance of the Work: The fruit crops maintained in the PGRU account for about 49% of the value of U.S. fruit and vine crop production and the vegetable crops account for 44% of the value of production of vegetables(Appendix A, Tables 1-2). The fruit and vegetable crops conserved at the PGRU are also highly valuable world wide (Appendix A, Tables 3-4).

Previous and current versions of this project (NE009) have made considerable contributions to the vegetable and fruit industry through provision of the basic genetic material for developing improved varieties with higher and more stable yield, disease and insect resistance, and improved quality. For example, germplasm of tomato has been used extensively for resistance to pests and diseases and genes from the apple collection have been used for resistance to apple scab, fire blight, blue mold, bitter rot, superficial scald, wooly apple aphids and drought.

In the past five years, this project has acquired 925 new accessions of rare or endangered samples of germplasm for incorporation into the NE-9 collections. Many of these accessions are native to parts of the world where natural habitats are being destroyed as populations increase and move into underdeveloped lands. The NE-9 project currently maintains 9,571 accessions of rare and valuable fruit crops such as apple (7,811), grape (1,485), and tart cherries (121). The clonally-propagated apple and tetraploid tart cherry accessions are backed up in cryogenic storage based on the protocols developed with the USDA, ARS, National Center for Genetic Resources Preservation (NCGRP) in Fort Collins, CO. Also maintained are 12,589 accessions of vegetable crops such as tomato, onion, cabbage and other cole crops, and a number of smaller collections including asparagus, celery, buckwheat, etc. Without the acquisition and maintenance of these materials, erosion of habitats in centers of origin of these and other important crops would surely result in extinction of much or most of this important genetically diverse material that has evolved over millions of years.


While maintaining the germplasm, scientists working on this project also characterize it for useful traits to make the material more readily usable by plant breeders and others who request accessions from the collections. Much of this characterization and evaluation is performed in collaboration with scientists from the NE-9 region and also other regions in the United States and even with scientists from other countries. Research into quality and health-beneficial traits was initiated at the request of partners in the crop CGCs and other users and information has started to be compiled for the core collections of the tomato, apple, and grape germplasm.


During the last five years of the NE-9 project, 29,515 seed samples were distributed for the vegetable crops and 39,347 samples of budwood, cuttings, pollen, DNA as well as seed of wild species for the fruit crops. These samples have been sent from 9,959 accessions of vegetable crops and 4,078 accessions of fruit crops. In the states covered by NE-9 there were 3,441 seed samples from 2,671 accessions distributed for the vegetable crops and 18,940 samples from 3,770 accessions distributed for the fruit crops.


Technical Feasibility and Value of a Multi-state Project: Acquisition, conservation, and characterization of germplasm collections are activities that by their nature are best done at a central location rather than being done by individual states, which would result in inefficient duplication of efforts. An integrated team approach involving state partners and the PGRU allows for an efficient conservation of fruit and vegetable germplasm while plant breeders and other scientists from individual states take the lead in characterization and evaluation, especially for high-priority quality traits and selection for biotic and abiotic resistance/tolerance. Utilization of germplasm for crop improvement by geneticists at individual state experiment stations capitalizes on the genetic resources conserved and the characterization/evaluation information maintained by the PGRU.


The PGRU is supported by the USDA-ARS and is best positioned to take maximum advantage of additional multi-state funds from the NE-9 project for conservation and characterization/evaluation of fruit and vegetable germplasm of important crops to the Northeastern region. Additional funds from NE-9 provide the critical resources for better management of the collection and quality service of germplasm distribution. It also supports the major efforts in screening for high-priority traits, such as important disease and pest resistances and traits important to human health, much of which is done in collaboration with scientists from SAES within this region.


Impact: Genes acquired from the NE-9 collection will continue to prove useful in breeding disease-resistant cultivars of fruit and vegetable crops, thereby stabilizing production and reducing dependency on agricultural pesticides. This will become increasingly important with the rapid emergence of exotic diseases and the growing emphasis on sustainability of fruit and vegetable production while reducing deleterious environmental effects. The collections at Geneva, NY will be used as sources of resistance to environmental stresses, such as high temperatures that reduce fruit set, and also as sources to increase the range of adaptation of the fruit and vegetable crops. This will prove useful to meet the changes in environmental conditions that the world now faces. With the growing public acceptance of the relationship between diet and health, many of the plant species in the NE-9 collection are increasingly being studied for the health-promoting phytochemicals they contain that are important in the human diet to reduce the risk of cancer, cardiovascular disease, and other chronic or life-threatening conditions. Finally, maximizing the use of available germplasm at the PGRU will help to keep U.S. producers competitive in a world marketplace where there is now 'One World' competitiveness within agriculture. Examples of use of the germplasm collections at PGRU during the current NE9 project include identification of accessions of radish and cabbage as sources of natural pigments for breeding programs aimed at emerging markets, identification and use of a wild tomato germplasm accession to provide late blight resistance in cultivated tomatoes, and the use of apple germplasm characterization to identify multiple disease resistances and improved plant architecture being used in new rootstocks.


Germplasm from the NE-9 collection held at PGRU has proven useful in developing improved cultivars of fruits and vegetables in the Northeast, the United State and the World:

  • Phylloxera resistant grape rootstocks and hybrids derived from North American wild germplasm were instrumental in rescuing the European wine industry.
  • The recent spread of grape cultivation throughout the U.S., especially in the northeast, has been made possible by use of the germplasm collection for breeding of new cultivars of Vitis vinifera that are adapted to environments where V. vinifera could not previously be grown.
  • The PGRU was the only institution that maintained the 100+ founding ancestors of popular apple cultivars.
  • Genes for resistance to apple scab, fire blight, and wooly apple aphids maintained in the germplasm collection have been deployed in disease resistant apple rootstocks and cultivars.
  • Millions of insect and disease resistant apple trees trace their genes to the PGRU apple collection.
  • Genes from wild tomatoes have been exploited to increase ease of harvesting, disease resistance and for stress and drought tolerance.
  • More than 20 genes from the Geneva tomato collection for bacterial speck, spotted wilt virus, tobacco mosaic virus, leaf mold, fusarium wilt, verticillium wilt, light blight, and nematode resistance have been bred into modern varieties.

Germplasm maintained at Geneva, NY is currently or will be used for crop improvement of fruits and vegetables:
  • Biochemical characterization of tomato germplasm at Geneva will be exploited by breeders for enhancement of fruit quality for flavor, texture, and health beneficial components such as vitamins, minerals, and cancer-preventing compounds.
  • Onion germplasm from Geneva is being used to develop Iris Yellow Spot Virus resistance, considered the number one imminent threat to onion production.
  • Germplasm of apple progenitors from Central Asia is being screened for important disease resistances such as fire blight and scab and is being incorporated into breeding programs.
  • Grape germplasm from Geneva will continue to be used in developing new grape cultivars for better resistance to biotic and abiotic stress.
  • The fruit and vegetable germplasm collection in Geneva is being screened for medicinal and nutraceutical properties for development of cultivars that will improve the health benefits of consumption.

Log Out ?

Are you sure you want to log out?

Press No if you want to continue work. Press Yes to logout current user.

Report a Bug
Report a Bug

Describe your bug clearly, including the steps you used to create it.