Table 1. Active and Planned Collaborative Studies

Collaborative Study	Status	Participants
Anticarcinogenicity of chlorophylls, dietary indoles, and tea polyphenols (Obj. 1)	Active	AZ, CA-B, GA-USDA, OR, UT
Anti-inflammatory and immune-enhancing activities of phytochemicals, omega-3 fatty acids, dietary indoles and herbal supplements (Obj. 1)	Planned	AZ, CO, CA-B, ID, OR, MI, UT
Genotoxicity/carcinogenicity of mycotoxins, phytoestrogens, plant alkaloids, plant-derived cell-signalling modulators (Obj. 2)	Active	AZ, CA-D,I L, ID, GA-USDA, OR, UT
Genotoxicity of heat-generated, food-borne carcinogens- heterocyclic amines, polycyclic aromatic hydrocarbons (Obj. 2)	Active	AZ,OR, CA-B, IL
Immunotoxic effects of natural bioactive foodborne chemicals (Obj. 2)	Planned	MI, ID, CA-B, UT, IL, ID
Biological activities of glycoalkaloids and pyrrolizidine alkaloids (Obj. 3)	Active	UT, CA-USDA
Anti-microbial activity of plant secondary metabolites (Obj. 3)	Active	CO, CA-USDA
Effect of agricultural practices and food processing on natural bioactive chemicals (Obj. 4)	Active	CA-D, CA-USDA

Table 2. Resources

Station	PI	Special Research Capability	
AZ	Romagnalo	Molecular analysis of chemical-induced tumor formation	
CA-B	Bjeldanes	Chemistry, molecular biology, toxicology of dietary indoles and processing-induced chemicals; studies in human cells	
CA-D	Winter	Methods of conventional, sustainable and organic production agriculture; isolation/quantitation of natural toxins	
CA-ARS	Friedman	Chemical structure function studies; methods of food processing; biosynthesis and analysis of natural bioactive chemicals	
СО	Vivanco	Induction and production of phytochemicals by cell culture; natural product isolation, chemical instrumental analysis, structure elucidation	
GA-ARS	Riley	Mechanisms of chemical-induced cell-signaling modulation; hazard assessment of natural toxins	
ID	Exon	Animal models for carcinogenesis and immune-modulation; chemical analysis of natural products	
IL	Helferich	Dietary estrogens and their influence in hormone-dependent cancer	
MI	Pestka	Cell and animal models for inflammation, autoimmune disease, innate immune function; assessment of global gene expression	
OR	Bailey	Carcinogenesis, tumor pathology, chemoprevention in fish and transgenic rodents; molecular biology and biochemistry	
UT	Coulombe	Molecular and cellular analysis of carcinogen activation/detoxification in cell and animal models; molecular toxicology	