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Project Number: NC-007 

Project Title: Conservation, Management, Enhancement and Utilization of Plant Genetic 
Resources  

Period Covered: 10/2020 through 09/2021 

Date of this Report: November 29, 2021 

Annual Meeting Dates: August 19-20, 2021 (virtual) 

Participants:  https://www.nimss.org/projects/view/participant_list/18364  

Minutes:  https://www.nimss.org/seas/minutes/51849 

 

Accomplishments and Impacts: 

Plant Introduction Research Unit and the North Central Regional Plant Introduction 
Station (NCRPIS):   

Obj 1: Development and utilization of diverse plant genetic resource (PGR) collections 
(germplasm) are essential, valuable sources of genetic diversity for use in scientific research, 
education, and crop improvement programs in the U.S. and internationally. The NCRPIS is a key 
element of the National Plant Germplasm System (NPGS), specializing in heterozygous, 
heterogenous, outcrossing crops and their wild relatives of maize, vegetables, oilseeds, woody and 
herbaceous ornamentals, and a wide variety of crops such as amaranth, perilla, quinoa and more. 
For the past 73 years, the crop collections important to the North Central Region (NCR) have been 
supported through the partnerships with Hatch Multi-State Project NC-007, the USDA-
Agricultural Research Service, the State Agricultural Experiment Stations of the NCR, and Iowa 
State University (ISU).   These resources are used to improve crop production genetics and 
technologies to address challenges related to climate instability, changing abiotic and biotic stress 
pressures, a to enhance the health and nutrition of society, and demands for bioenergy resources. 

Curatorial personnel acquire, maintain and conserve, phenotypically evaluate, genetically 
characterize, document, and distribute plant genetic resources and associated information.  
Collection development is a complex process, and depends on access to resources controlled by 
state, national, international, and both public and private entities. Identification of gaps in PGR 
collection representation is necessary in order to develop acquisition priorities, and gaps are 
addressed via exploration and/or exchange with other collections.   

Obj 2, 4, 5: Germplasm Acquisition, Maintenance and Distribution: The August 2019 derecho 
was responsible for roof damage to the large 4C cold storage building. Roof replacement provided 
by Iowa State University was completed in February 2021. North Central Regional Plant 
Introduction Station (NCRPIS) collection holds 54,490 accessions (54,202 in FY2020), grew by 
365 accessions and 24 were deactivated. Ames personnel fulfill PGR requests during the pandemic 
with appropriate safety practices.  In FY2021 to date, 39,326 items were distributed, comparable 
to the 43,432 items distributed in all FY2020, reflecting reduced demand due to challenges 
associated with the pandemic. About 15,000 items are distributed annually for internal PGR 
management needs. In FY2021 to date nearly 1,450 orders were received; researchers of the 12 
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Land Grant institutions of the NCR received nearly 49,406 NPGS distributions, 9,574 (19%) of 
those from the NCRPIS. 

The collections are 79% available. More than 1,500 seed health tests were performed to comply 
with phytosanitary import requirements associated with international maize and sunflower seed 
requests. Cucurbita seedlings were ELISA tested prior to transplanting to the field to ensure that 
they were free of squash mosaic virus. Field and greenhouse inspections were conducted to ensure 
that all plantings were disease-free, and samples were cultured of specimens with observable 
symptoms. Approximately 7,816 accessions were tested for viability as part of routine 
maintenance activities to ensure the quality of the collections; about 31% of the entire collection 
is in need of periodic viability testing. The viability team’s “smaller sample/rep, multiple rep 
testing strategy” rapidly identifies seed lots that potentially have low viability and require more 
testing; this has greatly increased our testing capacity. Backup seed lots were sent of 1,474 
accessions to the National Laboratory for Genetic Resource Preservation (NLGRP) in Ft. Collins, 
CO; 82% of the collection is backed up. More than 2,008 accessions were also prepared for backup 
in the Global Seed Vault in Svalbard, Norway. 

Approximately 1,514 accessions were grown for seed increase in across all taxa, including 
perennials that will be maintained until seed increase goals are achieved, about a 50% increase 
over 2019 plantings, but still below historical averages due to pandemic-related labor issues. 
Tropical maize increases were again sent to a commercial nursery provider in Mexico due to lack 
of temperate adaptation in fall, 2020, based on past excellent quality seed return, and 25 highland 
tropical maize accessions with older, low viability seed await seed increase at CIMMYT’s high 
altitude Tolucca site.  

Obj 3: Evaluation and Characterization: Observations for about 2,764 accessions and images for 
3,115 accessions were loaded to the GRIN-Global (GG) database. Evaluation of the Brassica rapa 
collection for winter/spring type determination was completed, and the information obtained 
supports regeneration management decisions and practices. A collection of Hydrangea was field 
established to evaluate adaptation, disease resistance, and traits such as form and fall color. Optical 
seed sorters are used to improve seed lots of maize prior to planting, and by ISU campus 
researchers for sorghum, millet, soybeans, and sorting haploid maize kernels. 

Obj 4: Software Development: Our development staff released enhancements to various wizards 
used by genebank personnel to manage workflows and seamlessly integrate information in GG, 
and new Curator Tool versions. A new Attach Wizard enables a variety of file and record types to 
be associated with accessions / accession groups. These products support management of 
associated information, curatorial workflows, and public access to information associated with 
PGR that facilitates their use. All enhancements must be coordinated with changes made to the 
public GG website’s functionality. Interoperability to connect GG accession information with 
information in model organism databases uses BrAPI (Breeding API) a Restful web service API. 

Obj 5: Tours were cancelled due to the pandemic.  Professional findings were presented at 
scientific and virtually to educators and other stakeholders. Our curators outreach activities were 
directed to classrooms and interested public groups, such as the Iowa Bee Keepers and 4-H clubs. 
No public field day was held in 2021. Development of learning objects and training materials for 
a Higher Education Challenge Grant is in process. 

Accomplishments & Impacts– State Reports: 
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Illinois (Sacks) 
 
Sacks lab:  Miscanthus is of interest as a bioenergy crop; University of Illinois research has 
examined genetic structure of populations of Miscanthus sp; multiple genomes provide advantages 
for adaptation to unique environment. Previous population structure studies provided insight on 
distinct genetic clusters from three regions of Japan, the Koreas, and multiple areas of China.  Crop 
persistence from year to year is important for this bioenergy crop; findings indicate second year 
growth can be used to predict varietal biomass yield performance. 
 
Juvik lab: Genetic, phenotypic, and biochemical analyses have identified flavone-anthocyanin 
copigmentation compounds from purple corn that can provided for a range of food additive color 
hues and potentially improve food produce shelf life.  The creation of linkage maps of tomatoes, 
sweet corn, broccoli and more recently for the bioenergy crop, Miscanthus, have been used for the 
identification of favorable QTLs and for marker-assisted introgression of beneficial alleles for 
improved quality, yield, and other traits into elite germplasm for commercial release. 
 
Kling lab: Research on shrub willow woody biomass indicates that lignin reveals variation in 
compositional traits such as lignin among species and interspecific hybrids. Yield is negatively 
correlated with lignin content and positively with cellulose content. 
 
Indiana (Hoagland) 

Wang lab: This Purdue University research program examines the processes that underlie 
genotype by environment interactions that emerge in response to abiotic stress. The group has a 
particular interest in evaluating and modeling the potential benefits of diverse accessions for 
breeding for novel climatic scenarios. Team members work on a variety of crop species, including 
cultivated Asian rice (Oryza sativa), upland cotton (Gossypium hirsutum), and soybean (Glycine 
max). A major research objective of the group is to improve the predictability of process-based 
models across genetically diverse materials under contrasting environmental conditions, towards 
the long-term goal of enhancing the utility of gene bank constituents.  
 
Hoagland lab: The soil microbiome, integral to the crop production system, responds to crop 
management practices, plant genotype, environmental factors, and impacts / responds to pathogens 
and pest populations. Fungal endophytes can influence production and post-harvest challenges in 
carrot. Carrot genotype was found to affect endophyte abundance and the potential for individual 
soil mycobiota to affect seed germination, seedling growth and tolerance to an important carrot 
pathogen. 

 
Iowa (Lübberstedt) 

Lübberstedt lab: Efforts to understand the basis of spontaneous doubling of the haploid maize 
genome using GWAS and double haploid breeding method with exotic maize revealed a major 
locus on chromosome five.  This may enable DH line production in exotic populations without use 
of colchicine or other artificial doubling methods (Verzegnazzi et al., 2021). A range of research 
activities of a collaborating Chinese group at Sichuan Agricultural University using the IBM 
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mapping population available from ISU has contributed to understanding of the genetic 
architecture underlying salt tolerance in (Ma et al., 2021), and to quantitative trait loci for tolerance 
to lead and cadmium soil levels (Hou et al., 2021). These efforts will contribute to the development 
and cultivation of salt-tolerant maize, and heavy metal tolerant varieties.  Efforts to improve seed 
production in outcrossing grass species focus on identifying candidate genes responsible for self-
incompatibility, particularly for perennial ryegrass. 
 
Hufford lab: A maize community effort to sequence the genomes of 26 important, exotic maize 
founders now provides an unprecedented resource to better understand gene expression and, 
ultimately, to use these finding to support development of maize genetic resources that can cope 
with environmental challenges. Maize centromere research has revealed previously unknown 
variation for gene content, methylation, and more (Hufford et al., 2021). 
 
Kansas (Stamm) 

Kansas State University has contributed to the advancement of the NPGS through utilization of 
PGR stored within the system and placement of germplasm within the system for future 
exploitation. Germplasm stored at the NCRPIS in Ames, IA is a critical resource for breeding 
canola-quality winter cultivars for the environments of the southern Great Plains. A new winter 
canola variety, KS4719, has been registered with superior winter hardiness, greater lodging 
resistance, and improved (less) pod shattering (Stamm et al., 2021). Both traditional variety 
improvement and parental line development for hybrid winter canola production are undertaken. 
Producers want to grow canola if profitable.  New cultivars continue to have a significant impact 
on the expansion of the southern Great Plains canola industry. Roughly 50 percent of the winter 
canola acres are planted to cultivars with a Kansas State University genetic component.  
Screening diverse PGR collections of sorghum and wheat resulted in identification of herbicide-
tolerant traits in these crops. The mechanism and inheritance of herbicide tolerance was 
investigated in sorghum (Pandian et al., 2020 and 2021). More recently, herbicide tolerant 
mechanisms are being investigated in wheat. These results help in transferring herbicide-tolerant 
traits to agronomically acceptable germplasm.  
 
Current wheat germplasm and its interaction with environment and management are being 
evaluated for traits associated with increased yield. Established experiments investigated 
physiological traits for increased yield (de Oliveira Silva et al., 2020), increased grain protein 
concentration (Lollato et al., 2021), and genetic gain in yield (Maeoka et al., 2020). 
 
Wild relatives of wheat have been used to broaden the gene pool of Triticum aestivum. Patterns of 
introgression from Aegilops tauschii were explored (Nyine, et al, 2020). Wild materials, including 
Ae. tauschii (Cruppe et al., 2020), Ambylopyrum mutica (Fellers et al., 2020), Triticum dicoccoides 
and Ae. ventricosa continue to be evaluated and transferred to adapted backgrounds for the 
purposes of addressing biotic and abiotic stresses and explore the potential of improving wheat 
quality and nutritional traits. 
 
Genetically diverse soybean association panels are being phenotyped for response to heat and 
drought stress. Accessions characterized as heat or drought tolerant are being used as parents to 
develop PGR with the goal of sustaining yield, quality and composition under heat and drought 
stress conditions while increasing genetic diversity in the US elite soybean germplasm.  



5 
 

 
Michigan (Grumet) 

Grumet lab: Extensive collaborative research program focuses on genetics and genomics of cucurbit 
crops. RG is the lead for a multi-institutional project with 20 co-PIs developing genomic tools for 
watermelon (Citrullus lanatus), melon (Cucumis melo), cucumber (Cucumis sativus) and squashes 
(Cucurbita pepo, C. maxima, C. moschata) (Grumet et al., 2020). The full NPGS collections for the 
above cucurbit species (1000-2000 accessions/crop) were genetically characterized by genotyping by 
sequencing (GBS) and all data are publicly available on the CuGenDB, http://cucurbitgenomics.org , 
(Wang et al., 2018; Wu et al., 2019; Wang et al., 2021). Genomically-informed core collections are in 
development for each crop, which will be re-sequenced to provide broadly available resources for 
genome wide association studies (GWAS) for important traits of interest. Team members are actively 
identifying, genetically characterizing, developing makers, and breeding for resistance for 18 crop-
disease combinations identified as top priorities by the respective cucurbit industries (Grumet et al., 
2020).   
 
Other projects at MSU that utilize NPGS PGR include: 
Cichy lab: Research focuses on genetic characterization of seed traits related to consumer acceptance 
and nutritional quality of dry beans including assessment of genotypic variability, diversity studies, 
mapping, identification of genomic regions and genes influencing cooking time, seed protein and starch 
composition, and superior end use quality.   
Douches lab: The potato breeding and genetics program optimizes conventional breeding techniques 
for varietal selection and development of superior potato varieties for the Michigan industry.  The 
program also studies self- compatibility in diploid potato, chip-processing quality, resistance to 
Colorado potato beetle, and resistance to late blight, and scab.  Screening for late blight resistance 
included testing all accessions of S. microdontum and introgression with Solanum species from Mexico 
with interspecific crossing barriers using S. verrucosum as a bridge species.  
Edger lab: Program on blueberries and strawberry breeding, genetics, genomics program studies the 
mechanistic basis of subgenome dominance in polyploid crops, largely to guide breeding efforts in 
blueberry and strawberry.  
Hollender lab: Program uses diverse PGR of cherry, apple and peach to investigate genes and pathways 
that regulate plant size, branch orientation, flower and fruit development, and bloom time.  Mitch 
McGrath used the assembled sugar beet genome to examine diversity in a wide range of beet accessions 
including 606 publicly available wild (321 accessions) and sugar (285 accessions) beet accessions, 30 
other crop types (table, fodder, and leaf), and six crop wild relatives.   
Thompson lab: This program studies how maize genotypes grow in different environments and utilizes 
the Wisconsin Diversity Panel, the Germplasm Enhancement of Maize lines, the Sorghum Association 
panel, and the Sorghum Conversion lines to find and introgress tar spot resistance in maize, and for 
quantitative genetics, phenomics, and predictive modeling in maize and sorghum. 
VanBuren lab: This program utilized the NPGS collection of teff (372 active accessions) for 
genome wide association studies and screening of agronomic, abiotic stress, and nutrition related 
traits. Accessions of other C4 cereals acquired from the NPGS (sorghum, finger millet, proso 
millet, fonio, pearl millet) are being phenotyped.   

Minnesota (Lorenz) 
 

http://cucurbitgenomics.org/
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The University of Minnesota Soybean Breeding Program accesses the wide range of genetic 
variation contained on the soybean collection in several ways. One example includes phenotyping 
diverse soybean accessions for shoot architecture (SA) features, including branch number, branch 
angle, petiole length, petiole angle, branch distribution, in addition to others. They are using this 
information to determine the range in genetic variation for SA properties, which influence canopy 
structure and hence light capture and light-use efficiency. It has been found that soybean presents 
a continuous distribution in SA, and that several combinations of SA features can achieve a high 
degree of light capture and transmittance. A panel of 400 diverse MGI accessions were phenotyped 
and the data combined with high-density genotypic data in a genome-wide association analysis. 
Several interesting marker-phenotype associations were made, including a strong association 
between markers on the end of chromosome 19 and canopy coverage and branch angle. This 
finding suggests that the well-known QTL on chromosome 19 influences canopy coverage through 
branch angle. A potentially new branch number QTL was also found closely linked to Dt2. These 
findings will contribute to soybean breeders’ knowledge on how shoot architecture can be shaped 
to influence canopy structure for more efficient light utilization, and to provide information on 
alleles contained in the germplasm collection that could be mined to breed new soybean varieties 
with desirable shoot architecture phenotypes. 
 
North Dakota (Johnson) 
During the 2017-2021 research cycle the adaptation potential (Research level 1) for Ethiopian 
mustard (Brassica carinata L.) and open-pollenated white sorghum (Sorghum bicolor L.) with 
ongoing efforts for industrial hemp (Cannabis sativa L.) and perennial flax (Linum lewissi Pursh.) 
were evaluated in North Dakota and west central Minnesota. Initial evaluations focused on 
identifying genotypes/varieties with early maturity, good grain yield and quality, and agronomic 
deficiencies such as low seed/seedling vigor, seed shatter, height extremes and non-uniformity, 
small seed size, and seed maturity at harvest. Adapted genotypes/varieties were selected for 
evaluation of stand establishment and harvest management. Additional research will include cover 
crops, intercropping, and crop rotation components of cropping systems. 

Sorghum must be planted early due to lack of early maturing varieties for short, cool growing 
season areas such as North Dakota. Yields of early maturity hemp varieties do not decline when 
planted later in June in eastern North Dakota. Timely hemp harvest is important since delays 
reduce yields from shattering more so than with sorghum. Hemp chemical and biological seed 
treatments show promise for reducing pure live seed mortality from 30-50% or more as compared 
to wheat, corn, and soybean, where mortality is commonly 10-15%. Stand establishment 
challenges were apparent for perennial flax where soil crusting, soil moisture limitations, and 
seeding depth are problematic. Delayed and extended emergence followed by slow growth reduce 
perennial flax competitiveness with weeds. Advantages of well-established perennial flax include 
higher grain value, potential for two harvests per season, stand duration potential for up to five 
years, and an available market.  

Corn and soybean relay intercropping systems were evaluated using the winter annual oilseeds 
camelina and field pennycress; potential for improved net production and economic advantage was 
largely dependent on grain yields and prices. The winter annuals reduced soybean yields in the 
second year in some locations such as North Dakota where the growing season is short and cool 
in comparison to Minnesota and Iowa. In addition to the potential economic grain value from 
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harvesting three grain crops in two growing seasons, several ecosystem benefits (early pollinator 
food source, soil protection, carbon fixation, and wildlife habitat) show enhancement  

Ohio  

At the Ohio State University (OSU), characterization, development, and germplasm release 
activities on are routinely conducted. These activities are made possible by the Ornamental Plant 
Germplasm Center (OPGC), (Tay et al. 2004), as well as active breeding programs in crops such 
as Barley, Tomato, Soybean, and Wheat, a domestication program in rubber dandelion 
(Taraxacum kok-saghyz), an active viticulture program that considers domestic PGR as well as 
interspecific hybrids of grapevine, a collection of Central Asia apple genotypes, and PGR 
collections such as Arabidopsis, pennycress, and sugar maple. These efforts also encompass 
obtaining and evaluating the performance of external PGR collections, as well as national and 
international collaborations that contribute to a more comprehensive characterization of 
germplasm in the groups of crops previously mentioned. In this regard, OSU activities encompass 
the six goals of the NC7 project in commercial and developing crops, with the OPGC as the 
vanguard of such activities. Thus, the OPGC and its personnel are committed to transferring 
technology, training, and methodology for PGR management, as well as germplasm of herbaceous 
plants and associated information, conducting germplasm related research, and encouraging the 
use of PGR and associated information for research, crop improvement, and product development. 
In its 8000 accessions representing ~300 genera, the current native priority genera are Coreopsis, 
Lillium, Phlox, and Rudbeckia, while non-native genera include Begonia and Viola. With the new 
directorship of the OPGC, it is expected that education to students, scientists, and the public will 
be paramount among OPGC’s activities. In addition, OSU active breeding and germplasm 
development programs will continue with the description, characterization, and release of PGR 
that contribute to the NGPS and scientific community in the improvement and developing of crops 
with current and future potential to contribute to the agriculture of the world.  

South Dakota (Caffe Treml) 

Researchers at South Dakota State University participated in the NC-7 Hatch Multi-state project 
by characterizing and utilizing plant genetic resources for crop improvement. Genetic resources 
were characterized for traits associated with production challenges in South Dakota and the region 
through diverse research projects. Climate trends, combined with technological, management, and 
economic interactions are correlated with increasing incidence of disease in sunflower production 
areas. 
 
Efforts have primarily focused on the characterization of soybean, sunflower, wheat, wheatgrass, 
and oat accessions. New sources of resistance to biotic and abiotic stresses have been identified 
for cultivar development. Examples include soybean accessions with resistance to root rot (Okello 
et al., 2020), and sunflower accessions with resistance to Phomopsis stem canker (Elverson et al. 
2020). Association mapping has also been used to identify genomic regions associated with 
Bacterial Leaf Streak, Tan Spot, and Spot Blotch resistance in hard winter wheat (Ramakrishnan 
et al., 2019; Sidhu et al.., 2019; Ayana et al. 2018). 
 
Wisconsin (Tracy) 
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Sweet corn is a important vegetable, used in both U.S. fresh market and processing industries.  The 
shrunken2, or sh2 allele, is present in 75% of sweet corn germplasm used by the processing 
industry and nearly 100% of the fresh market industry. Efforts to understand the evolution of 
modern sweet corn using a high-quality reference-genome assembly of sweet corn inbred line 
Ia453-sh2 provide evidence for relationships between sweet and other types of maize, identified 
genome regions under selection, and candidate genes associated with sweet corn traits (Hu et al., 
2021).  GWAS studies were devoted to kernel carotenoids (Bassegio etal, 2020), and identification 
of a gene for resistance to maize common rust, an important and widespread disease that impacts 
sweet corn yields and quality (Olukolu et al., 2016). Roughly 50% of the inbreds in the GWAS 
panel were sourced from the maize collection housed at NC-7 in Ames. 
 
Organic plant breeding typically is supported by fewer resources than traditional plant breeding.   
Genomic prediction may be able to use data for potential hybrids whose parents are not part of a 
training set, and cannot be evaluated using general combining ability data, but can be modeled 
using genomic prediction (Zystro et al., 2021).  Numerous lines sourced from the NC-& collection 
are being used in a breeding program to improve earworm (Helicoverpa zea) resistance for in 
sweet corn for organic growers (Moore and Tracy, 2018, 2020). 
 

Outcomes /Impacts: 

• Demand continues to escalate for access to a broad range of well-document, high quality plant 
genetic resources which enable basic and applied research applications necessary to sustain 
agricultural productivity and to achieve need advances in supply of food and feed, ornamental 
and nursery industry stocks, and for nutrition, health, bioenergy, and economic growth. 
Addition of new resources via collection and exchange is essential for continued innovation. 

• Establishment of clonally propagated plant collections in vitro helps assure their survival and 
maintenance as threats to field survival continue to grow for many of these species.  

• Software products that enable collection management, genebank workflows, and public access 
to plant genetic resource information facilitate use of PGR to meet well-targeted objectives.  

• Efforts devoted to characterization and evaluation of the genetic resources for priority traits 
and genetic profiles, coupled with information access, help researchers better target those 
accessions which can best address objectives and realize their potential to contribute.  
Examples: Identifying Brassica, soybean, maize, vegetable, and horticultural crop genetic 
resources that offer traits such as cold hardiness, salinity or heavy metal tolerance, specific 
chilling and other requirements for flowering (impacts fruit or seed production), disease and 
insect resistance, and the potential to contribute beauty to our landscape and important 
ecosystem services that enhance the quality of life in communities.  Utilizing spontaneous 
doubling of haploids instead of chemically assisted doubling will substantially improve 
capacity to generate maize double haploid inbreds; identifying the genetic basis of the 
spontaneous doubling trait is a key accomplishment. Identification of germplasm and/or genes 
that contribute winter hardiness to fall planted crops, or that withstand wide variations in 
seasonal conditions supports overwintering and crop production success. Multidisciplinary 
efforts to utilize PGR resources for disease resistance improvement identified trait loci and 
markers for use in cucurbit breeding programs for diseases that threaten crop production. 
Defining quality parameters in seeds of plant species which have proven difficult to germinate 
or emerge helps agronomists develop best management practices to support crop production, 
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and genebank managers to maintain these genetic resources.  Reliable stand establishment is 
critical, especially with variable climate trends, to achieving populations that support yield 
goals. Genomic prediction of breeding values is used to select promising parents for crossing, 
contributing to rapid breeding progress.  Example: conventional and organic sweet corn 
breeding programs to improve human health and nutrition. Development of maize populations 
that include landraces and wild relative teosinte supports discovery and understanding of traits 
for which we have little understanding. Identification of quantitative trait loci controlling field 
resistance is being used in marker-assisted breeding of tolerant crop varieties. The 
chromosome-scale genome assemblies provide a foundational resource for research and 
innovation.  

• Development of new cultivars provides solutions for production challenges as well as 
introducing novel variation.  Examples:  Development of diploid potato breeding systems will 
accelerate genetic gain and new variety development.  Release and licensing of herbicide 
tolerant, winter hardy varieties of winter canola provide producers in the southern Great Plains 
with options for crop rotation and diversification.  

• Development of new markets for crops and new cropping systems provides value to growers 
and society.  Examples: Identification of new crops, factor posing production risks, need for 
best management practices are critical to success in establishing new crops that are profitable.  
North Dakota’s work with grain sorghum, industrial hemp, Ethiopian mustard and camelina 
have resulted in commercial production, and are now working on perennial flax. Expanded 
potential for forage in production in high saline rangeland soils will depend on identification 
of forage crop resources with promise and incorporation of these traits into elite cultivars. 
Development of unusual cultivars with unique culinary properties expands producer and 
consumer options. 

• Training of undergraduate and graduate students, postdoctoral candidates, and visiting 
scientists provides valuable experience with use of plant genetic resources for a wide range of 
objectives and provides for the next generation of U.S. scientific leadership in agricultural and 
allied sciences.  Providing education and information about genetic engineering of crop plants 
without advocacy broadens public understanding of the applications of such technologies, their 
role in our food and potential risks/benefits. Incorporation of genetic resource investigations 
in development of predictive analytic tools provides a valuable opportunity to develop 
scientists who can capitalize on technical and analytical advances to realize the inherent value 
of the plant genetic resource collections. 

• Germplasm use continues to contribute to the aesthetics and sustainable management of the 
world we live in, and the health, welfare, and security of the world’s peoples. 
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Management Interactions in Biomass Yield and Feedstock Composition of Photoperiod-Sensitive Energy 
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