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ABSTRACT
The Iowa Best Management Practice (BMP) Mapping Project is a GIS database of conservation practices
installed in Iowa’s fields as seen in aerial imagery from 2007 to 2010. In this study, we explore the feasibility
of using convolutional neural networks (CNNs) to automate the process of image segmentation for several
conservation practices in the database: grassed waterways, pond dams, terraces, and water and sediment
control basins (WASCOBs). We experiment with imagery sources, sampling methods, transfer learning,
neural network architectures, and loss functions to optimize segmentation performance. Our results demon-
strate that lidar-derived hillshade imagery is important for identifying structural BMPs such as pond dams,
terraces, and WASCOBs. Additionally, we show that a probability-proportional-to-size random sampling
method for selecting training imagery outperforms CNNs trained on imagery sampled by systematic random
sampling. We also find evidence that the centerline dice loss function helps to preserve the connectedness
of linear BMP features. The results of this study show it could be feasible to develop an automated method
of identifying BMPs from remote sensing imagery to monitor the adoption of BMPs across the Midwestern
United States.
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1. Introduction

The 2008 Gulf Hypoxia Action Plan calls for the states along the
Mississippi River to reduce nitrate and phosphorus runoff from
agricultural fields. These nutrients contribute to low oxygen
concentrations (hypoxia) in the Gulf of Mexico, threatening
marine life and the health of an increasingly fragile ecosystem
(EPA. 2008). Best management practices (BMPs) for soil and
water conservation are key strategies for reducing soil erosion
and nutrient runoff due to industrial agriculture (Lowrance,
Dabney, and Schultz 2002). Such BMPs include structural, veg-
etative, and managerial practices such as grassed waterways,
terraces, cover crops and strip cropping, among others (USDA
2012). Adoption of BMPs has become increasingly practiced in
the Midwestern United States in order to reduce nitrate and
phosphorus runoff into the Mississippi River (Schulte et al.
2008; Arbuckle 2013; Rundhaug et al. 2018). The Iowa Nutrient
Reduction Strategy highlights Iowa’s continued commitment to
the use of BMPs in order to reduce negative environmental
effects of agriculture (ISU 2012).

Despite widespread adoption of BMPs in the Midwestern
United States, there are few geographic records of the use of these
practices. In order to monitor compliance with the 2008 Gulf
Hypoxia Action Plan, it is necessary to track the patterns of the
use of BMPs over both space and time (McNeely et al. 2017). By
geographically mapping the use of soil and water conservation
BMPs, scientists and agricultural stakeholders may be able to
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more effectively study the influence of BMPs on water quality
and prioritize locations to install additional BMPs. Studies have
shown that conservation efforts have the greatest influence when
BMP use is targeted to address sites with disproportionately neg-
ative environmental effects (Schulte et al. 2008). These sites can
be targeted with precision conservation tools such as the Agri-
cultural Conservation Planning Framework, which can compare
existing conservation efforts to full potential (Rundhaug et al.
2018). Creating an up-to-date database of existing conservation
practices may assist with targeted conservation efforts to more
effectively improve water quality.

The Iowa BMP Mapping Project has taken an initial step
toward this goal by creating a geographic database of several
BMP types used throughout the state (McNeely et al. 2017).
The BMPs mapped in the geographical information system
(GIS) database include terraces, water and sediment control
basins (WASCOBs), grassed waterways, pond dams, contour
strip cropping and contour buffer strips. LiDAR-derived prod-
ucts as well as natural and color-infrared aerial imagery from
2007 to 2010 were used to hand digitize the BMP layers. The
creation of this baseline BMP database began in 2015 and con-
cluded in 2019. However, continuing to rely on human labor to
hand-digitize BMPs is unsustainable. There is a need to develop
automated methods to increase the efficiency of monitoring
BMPs in Iowa and the Midwest in order to understand the trends
of the use of these practices over time.
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Deep learning methods, such as convolutional neural net-
works (CNNs), have been achieving high performance on com-
puter vision tasks over the last decade (Krizhevsky, Sutskever,
and Hinton 2012; Long, Shelhamer, and Darrell 2015). The
U-Net was developed to assign a class label to each pixel in
an image, segmenting images for tasks such as locating cells
in biomedical imagery (Ronneberger, Fischer, and Brox 2015).
Computer vision approaches have also been used for remote
sensing segmentation (Mountrakis, Im, and Ogole 2011; Bel-
giu and Dragut 2016; Cheng and Han 2016). Deep learning
approaches have become very popular in the last decade (Zhu
et al. 2017). Image segmentation via CNNs has been used for
remote sensing tasks such as mapping roads (Zhang, Liu, and
Wang 2017), sea-land coastlines (Li et al. 2018), and land cover
(Stoian et al. 2019), among many others (Isikdogan, Bovik, and
Passalacqua 2017; Ji, Wei, and Lu 2019; Wu et al. 2019; Yang
et al. 2019; de Albuquerque et al. 2020). In this article, we use
the U-Net to segment images into BMP and background classes.
Image segmentation via CNNs could help automate the process
of mapping BMPs throughout Iowa and the Midwest. A pre-
vious study attempted segmentation of grassed waterways and
terraces using U-Net, but several relevant and promising tech-
niques, especially the use of LiDAR-derived products as a remote
sensing data source, were not explored (Martins 2020). In this
article, we present experiments exploring additional methods
to improve the performance of segmenting images into BMP
and background classes for four BMP types: grassed waterways,
pond dams, terraces, and WASCOBs.

We study the task of mapping BMPs via CNNs through
several experiments. Soil and water conservation BMPs often
include both vegetative and structural components, therefore
information from several remote sensing data sources could
be useful to recognize these features (McNeely et al. 2017).
In this article, first we experiment with incorporating color-
infrared and LiDAR-derived products in our model. Transfer
learning is a standard technique applied in deep learning tasks
in order to efficiently train and boost model performance using
the weights trained from independent modeling tasks such as
ImageNet (Deng et al. 2009; Oquab et al. 2014). However, these
weights come from models trained on three-channel RGB image
data, so addressing the applicability to remote sensing products
including both infrared and LiDAR-derived channels needs to
be explored. Finally, we also experiment with a probability-
proportional-to-size sampling technique compared to system-
atic sampling to select training data and a centerline dice loss
function compared to standard dice loss (Milletari, Navab, and
Ahmadi 2016; Shit et al. 2020).

The experiments presented in this article demonstrate U-
Net is a promising deep-learning approach to segmenting BMPs
in remote sensing imagery. Our results show that LiDAR-
derived products and sampling schemes such as probability-
proportional-to-size sampling improve segmentation perfor-
mance. The centerline dice loss function helps to preserve the
connectedness of linear features, such as grassed waterways,
terraces, and WASCOBs. These results may be applicable to
other vegetative and/or structural features that are identifiable
in high-resolution aerial or satellite imagery, especially in highly
unbalanced segmentation problems. Our models could con-
tribute to a framework for automating the process of mapping

soil and water conservation BMPs in remote sensing imagery.
Automating this process could help scientists more efficiently
understand the trends of the use of these practices over time and
prioritize future conservation efforts.

This article is organized in the following sections. Section 2
details the datasets used in this article including the Iowa BMP
Mapping Project dataset and remote sensing imagery sources.
Section 3 presents the sampling methods, model architecture
details, data augmentation techniques, computational specifi-
cations, loss functions and metrics used in the experiments
presented in Section 4. Finally, Section 5 discusses the results
of our experiments.

2. Data

In this section, we describe the data derived from the Iowa BMP
Mapping Project and provide a description of the four BMPs that
were segmented by our models. Additionally, we describe the
remote-sensing image layers used to identify these BMPs.

2.1. Iowa BMP Mapping Project

The Iowa BMP Mapping Project is a statewide GIS database
of several BMP types that were present in fields across Iowa
between 2007 and 2010 (McNeely et al. 2017). The BMPs
mapped in this GIS database include terraces, water and sed-
iment control basins (WASCOBs), grassed waterways, pond
dams, contour strip cropping and contour buffer strips. LiDAR-
derived products as well as natural and color-infrared aerial
imagery were used to hand digitize the BMP layers. Over 1.3
million instances of grassed waterways, pond dams, terraces,
and WASCOBs are included in the Iowa BMP Mapping Project
database.

The polygon and line features that record the locations of
these BMPs in this database can be rendered to generate ref-
erence layers of binary pixels capturing the BMP class (1) and
background class (0) at 1 m resolution. For the pond dam,
terrace, and WASCOB BMPs, a buffer region of 5 m. was
applied around these line features to more accurately represent
these practices in a raster format. These reference layers were
used to train the deep learning models to recognize pixels
representing BMPs according to both vegetative and structural
characteristics.

2.2. BMPs

The four BMP types that we study in this article include grassed
waterways, pond dams, terraces, and WASCOBs. These BMPs
vary in vegetative and structural properties as well as function.
See Figure 1 for an example of how each of these BMPs appear
in remote sensing imagery.

Grassed waterways: A grassed waterway is a graded channel
ideally formed as a shallow, rounded depression between hills or
in other locations where water collects as it runs off fields during
rain events. Permanent grass or other appropriate vegetation
helps to slow runoff in these channels as a preventative measure
against gully erosion (Lowrance, Dabney, and Schultz 2002;
Keep and McLoud 2012). Grassed waterways can be recognized
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by their permanent vegetation in early-season color-infrared
imagery, often appearing red in color compared to barren fields
(McNeely et al. 2017).

Pond dams: A pond dam is either an excavated pit or dammed
pool of water that helps to prevent gully erosion by collecting
runoff. These ponds fill with water during rain events, which
helps to protect water quality by storing runoff nutrients as
well as preventing erosion (Lowrance, Dabney, and Schultz
2002; Renfro 2012). Pond dams with structural embankments
are often recognizable in LiDAR-derived products. However,
searching for pools of water in the color-infrared imagery before
identifying the embankment with the LiDAR-derived hillshade
may be a more efficient method of identification (McNeely et al.
2017).

Terraces: A terrace is a structural BMP that runs across mod-
erate and steep slopes to intercept runoff. Used in parallel along
a hill, these features help to partition long, steep slopes into a
series of shorter slopes. When runoff collects on a slope behind
the terrace, soil erosion, and nutrient runoff are reduced because
these particles can settle before draining. Some terraces may be
used in conjunction with grassed waterways (Lowrance, Dabney,
and Schultz 2002; Meyer and Bracmort 2012). While sometimes
recognizable in color imagery, these features are often easier to
identify in LiDAR-derived products, such as a hillshade image or
a high-resolution digital elevation model (McNeely et al. 2017).

WASCOBs: Water and sediment control basins (WASCOBs) are
similar to terraces, but are often shorter and found perpendic-
ular to a natural channel in a field. These features are ridged
structures that trap sediment as runoff drains along a natural
shallow watercourse. WASCOBs help prevent gully erosion and
slow the drainage of runoff, allowing time for nutrient-rich sedi-
ment to settle (Lowrance, Dabney, and Schultz 2002). WASCOBs
are best recognized using a LiDAR-derived product (McNeely
et al. 2017).

2.3. Remote Sensing Datasets

The remote sensing datasets used in this article were derived
from the same sources of color-infrared aerial imagery and
LiDAR-derived products that were used to digitize the BMPs
in the Iowa BMP Mapping Project. A 2 ft. resolution, leaf-off
spring aerial photography raster layer flown between 2007 and
2010 was used to provide color-infrared imagery (ISUGIS-SRF
2018). The spring capture dates and infrared band can help to
differentiate between vegetation and bare ground. Unfarmed
conservation practices often sprout before crops begin to grow
and this can be visualized by the infrared band’s ability to
highlight actively growing vegetation (McNeely et al. 2017).
Additionally, a 1 m. LiDAR-derived hillshade product captured
between 2007 and 2010 was used to provide relative elevation
information and visualization of structural geographic features
across Iowa (ISUGIS-SRF 2018). This hillshade layer was nec-
essary to digitize pond dam, terrace, and WASCOB features
(McNeely et al. 2017). It is possible that a 1 m. digital elevation
model (DEM) may provide more useful geographic information,
but only a 3 m. product was available for Iowa. We decided that

generating a new 1 m. DEM layer would be inefficient compared
to using the available hillshade product.

Figure 1 gives an example of how these BMPs appear in the
color-infrared aerial imagery, LiDAR-derived hillshade product,
and the reference image derived from the Iowa BMP Mapping
Project. These images were cropped along the unit boundaries
of a 0.5 mi2 grid superimposed over the state of Iowa and
transformed into 1024 by 1024 pixel images. The color infrared
image had three bands: a near-infrared band, a red band, and a
green band with values ranging between 0 and 255. The values
of the LiDAR hillshade product also ranged between 0 and 255
but this image had only a single grayscale band. The values of
both of these images were rescaled to between 0 and 1 before
model training. The reference image indicates where BMPs
were located in the aerial imagery according to the Iowa BMP
Mapping Project database. Pixels belonging to the BMP class
were labeled with a 1, while background pixels were labeled 0.
The trained models produce pixel-wise 0/1 classifications of the
color-infrared and LiDAR-derived hillshade images, predicting
the locations of each BMP type from these inputs. The output
had the same height and width as the inputs (1024 pixels2)
and the prediction performance was directly compared to each
reference image.

3. Methodology

In this section, we describe the sampling methods that were used
to produce the training, validation, and test sets for our exper-
iments. Additionally, we describe the Resnet50 model archi-
tecture, data augmentation, and computational specifications
that were common across all of the models in our experiments.
Finally, we describe the two loss functions that we tested in
our experiments and the metrics that were used to evaluate and
compare our models on the test set.

3.1. Sampling

Using GIS, a 0.5 mi2 grid layer was superimposed over the state
of Iowa to partition the remote sensing imagery and BMP refer-
ence layers into units. For each BMP type, the units containing
a nonzero amount of the BMP of interest were subset to form
study populations. Two training sets (one from systematic sam-
pling and one from probability-proportional-to-size sampling),
one validation, and one test set were sampled for each BMP type
(Table 1). The validation set for each BMP type was used to mon-
itor the performance of the model during training and model
selection. The performance on the test set was calculated only
after all final models were selected to evaluate generalization to
new data. The test set remained completely independent from
all other datasets to prevent data leakage.

For the validation and test datasets, a sample of 500 units was
taken separately for each BMP type via standard systematic ran-
dom sampling (Fuller 2009). Prior to taking the sample, the total
area of each BMP type was calculated for all units. These auxil-
iary data were then used to assist with the sampling procedure to
form the four training, validation, and testing datasets. For each
sampled unit, the corresponding BMP reference layer, color-
infrared imagery, and LiDAR-derived hillshade product were
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Figure 1. Color infrared, LiDAR hillshade, and reference imagery were used to train the convolutional neural network models in this article. This figure shows how the aerial
images relate to the reference image for each BMP type. Each image is 1024 by 1024 pixels sampled from a 0.5 mi2 grid superimposed across the state of Iowa.

clipped at the unit boundaries. These systematic samples were
designed to accurately represent the population distributions of

the BMP types across Iowa to create representative validation
and test sets.
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Table 1. For each BMP type, the following datasets were sampled for training,
validation, and testing.

Sample Sampling
method

Use Size (units)

Training set: sys Systematic Train “baseline”, “lidar”
and “imagenet” models

1000

Training set: pps Probability-
proportional-
to-size

Train “pps” and
“cldice” models

1000

Validation set Systematic Validation set
for all models

500

Test set Systematic Test set for all
models

500

NOTE: Two sampling methods were used to select training dataset samples. Refer to
Section 3.1 for a description of these methods. Refer to Section 4 for a description
of the experimental models that were trained using these training datasets.

Figure 2. Distribution of total grassed waterway area within each sample of 1000
units for both the systematic (sys) and probability-proportional-to-size (pps) train-
ing datasets.

Two sampling methods were used to form experimental
training datasets for each BMP type. Exactly similar to the sys-
tematic random sampling procedure described above, a system-
atic random sample of 1000 training units was generated for each
BMP type. Additionally, a custom probability-proportional-to-
size random sampling technique was used to oversample units
that contained larger areas of each BMP type compared to the
population.

Fuller (2009) describes probability-proportional-to-size ran-
dom sampling in detail. For our application, consider ai to be the
total area of a BMP type within the ith 0.5 mi2 unit, where i ∈
1, 2, . . . , N. Let the probability of selecting unit i be pi = a2

i∑N
i=1 a2

i
.

We squared ai, the area of BMP in each unit i, to further weight
the sample selection toward units with larger areas of BMP.

We hypothesized that this sampling technique would select
units with more examples of each BMP type across the train-
ing sample and therefore improve performance compared to
the model trained with units selected via systematic random
sampling. We refer to this sampling technique as probability-
proportional-to-size, “pps,” throughout this article. Histograms
of the total area of grassed waterway for the units in each sample
are depicted in Figure 2 to illustrate the effect of these sampling
techniques.

Multiple BMP types could also be classified simultaneously
within each image using a multi-class segmentation model.
However, we chose to create separate samples for each BMP
type because designing a sampling method that could accurately

represent the varying distribution of these BMPs across Iowa
in a single training dataset would be more complex. Starting
with separate datasets for each BMP type allowed us to carefully
control the samples and conclude how the models performed
for each BMP type independently. The results from a multi-
class segmentation model would be more difficult to interpret
on a per-BMP type basis. Additionally, we selected small sample
sizes for each BMP type to train and test multiple experimental
models in a computationally efficient manner. There are tens of
thousands of 0.5 mi2 units across Iowa that contain instances
of each of these BMP types. In the future, more of these units
could be sampled to create larger training sets and also produce
a multi-class segmentation model. However, these small training
datasets and our exploratory analysis provide a starting point
that may pave the way for designing these advanced studies more
efficiently.

3.2. U-Net and Resnet50 Architecture

The U-Net is recognizable by its U shape (Figure 3). Originally
developed for biomedical image segmentation (Ronneberger,
Fischer, and Brox 2015), this deep learning network has an
“encoder/decoder” structure that encodes spatial patterns at
various levels and then decodes this information to produce a
segmented map of the original image. CNNs, such as the U-Net,
rely on convolutional layers, which functionally combine, that
is convolve, trainable sets of parameters called filters over the
image to learn spatial patterns relevant to the segmented classes.
The U-Net uses connections between the encoder and decoder
layers to preserve high-resolution spatial patterns and output
precise segmentation maps compared to fully convolutional net-
works.

In addition to convolutional layers, the U-Net is composed
of a series of other layers and functions. After each convolution,
a batch normalization layer is applied to accelerate network
convergence (Ioffe and Szegedy 2015). Then, a ReLU activation
function performs a nonlinear transformation, an identifying
characteristic of neural networks. During the encoding process,
down-sampling max-pooling layers and striding are applied to
reduce the dimensions of the feature maps generated by the
convolutions. The original dimensions of these feature maps
are then recovered by up-sampling layers during the decoding
process and connected by concatenation before additional con-
volution is performed throughout the decoder. Finally, a sigmoid
or softmax transformation function converts the feature maps to
the segmented classes.

This U-Net model was built on a Resnet50 encoder backbone
(Yakubovskiy 2019). By combining the Resnet50 architecture
with the U-Net model, we used a Deep Residual U-Net approach
(He et al. 2016; Zhang, Liu, and Wang 2017). A “residual”
network connects the original inputs before convolution to the
post-convolution outputs via addition before applying the final
ReLU activation function in a block. Intuitively, the network
learns to minimize the residual, or the difference between the
input and output of each block, in order to optimize an identity
mapping. Residual networks have helped to solve the problem
of vanishing gradients in very deep neural networks to improve
model accuracy (He et al. 2016).
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Figure 3. This Deep Residual U-Net model is composed of a ResNet50 encoder
architecture and standard U-Net decoder. Residual blocks in the encoder are
repeated as indicated and the output feature maps are concatenated at various
points to the decoder. Each descending level of residual blocks begins with a stride
2 convolution which reduces the dimensions of the feature map. Upsampling layers
expand the encoded version of the image back to its original height and width.

This U-Net model with Resnet50 architecture involves a
series of convolutional, max-pooling, batch normalization,
upsampling, and activation layers. Figure 3 summarizes the
model. Before each convolutional layer, batch normalization and
activation layers are applied. Each set of three convolutions is
connected as a residual block. After the initial residual block in
each level, where the dimensions of the input are halved and the
number of channels are doubled, further residual blocks with

these new dimensions are included. The encoder structure of
this CNN follows the Resnet50 architecture and the decoder
follows the standard U-Net architecture. For up-sampling, 2 by
2 up-convolution layers are included before filters derived at
the corresponding level of the encoder are concatenated. Batch
normalization and activation layers are applied after each con-
volutional layer in the decoder. In the final layer of the network,
a sigmoid activation function produces the segmentation output
with the same height and width as the original input.

3.3. Data Augmentation Scheme

A technique to improve the training of deep learning models is
to use data augmentation on the training dataset. Each training
image may be randomly augmented via image transformations
during each epoch to avoid overfitting the network to the train-
ing dataset. This helps to generalize the model to additional
imagery. Data augmentation also helps to artificially increase
the size of the training dataset, which is especially important in
applications where there are few annotated images. The transfor-
mations commonly applied for data augmentation include shift,
scale, rotation, reflection, and color transformations (Abdelhack
2020; Krizhevsky, Sutskever, and Hinton 2012). It has been
shown that horizontal and vertical reflection alone may pro-
vide sufficient positional transformations for remote sensing
imagery (Abdelhack 2020). Color transformations, such as those
described in Wu et al. (2019), are also commonly applied to
account for variable sensor and atmospheric conditions.

Following the literature, we applied horizontal/vertical reflec-
tions (Abdelhack 2020) and color augmentation (Wu et al. 2019)
to the training data for all of our models. Each training image
was reflected horizontally and vertically at random, with the
probability of each reflection being 0.5 independently. Addition-
ally, using random draws from uniform distributions, the hue of
each original image was varied from −30 to +30, the saturation
varied from −5 to +5, and the value varied from −15 to 30 (Wu
et al. 2019).

3.4. Computational Specifications

Keras 2.1.0 was used to implement the models described in this
article (Chollet 2015). Each model was trained on two NVIDIA
Tesla V100 32 GB GPUs. Each image was resized to 1024 by 1024
pixels. The training images were grouped in mini-batches of 5
over 100 epochs. Each model was optimized via ADAM with an
initial learning rate of 0.001 (Kingma and Ba 2017). The learning
rate was multiplied by a factor of 0.1 when the validation loss
reached a plateau with a patience of 10 epochs. Training for each
model was completed in less than 8 hr.

3.5. Loss Functions and Metrics

We experimented with two loss functions. The first was the
standard batch-wise dice loss function (Milletari, Navab, and
Ahmadi 2016). Additionally, we tested the batch-wise centerline
dice loss function introduced by Shit et al. (2020). Each BMP
class populated only a very small proportion of each image. Dice
loss functions have been shown to better handle class imbalance
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compared to other standard loss functions such as binary cross-
entropy loss (Milletari, Navab, and Ahmadi 2016). These loss
functions are derived from the following scores.

Dice score: The standard Dice score (DS) evaluates the har-
monic mean of precision and recall, as proposed by Dice (1945).
It is considered a standard metric for comparing the similarity
of two sets of images. Consider TP to be the number of cor-
rectly predicted class 1 pixels compared to the reference pixels.
Similarly, TN is the number of correctly predicted class 0 pixels.
Finally, FP is the number of incorrectly predicted class 0 pixels,
and FN is the number of incorrectly predicted class 1 pixels. The
Dice score DS can be defined as follows:

Precision = TP
TP + FP

Recall = TP
TP + FN

DS = 2 × Precision × Recall
Precision + Recall

Centerline Dice score: The centerline Dice score (clDS) con-
siders the intersection of skeletonized segment centerlines. As
a loss function, it preserves the connectedness of predicted
features, especially those linear in nature. As described in Shit
et al. (2020), clDS is calculated from the reference mask MT
and predicted segmentation mask MP. The centerline skeletons
ST and SP are extracted from MT and MP, respectively. The
proportion of SP lying within MT and the proportion of ST
lying within MP are reported as Topology-Precision (tPrec) and
Topology-Recall (tRec). Accordingly, clDS is the harmonic mean
of tPrec and tRec.

tPrec(SP, MT) = |SP ∩ MT |
SP

tRec(ST , MP) = |ST ∩ MP|
ST

clDS(MT , MP) = 2 × tPrec(SP, MT) × tRec(ST , MP)

tPrec(SP, MT) + tRec(ST , MP)

Loss functions: Loss functions were applied in a batch-wise
manner in our experiments. The Dice loss function �Dice and
clDice loss function �clDice were found using differentiable ver-
sions of the scores derived above, as detailed in Milletari, Navab,
and Ahmadi (2016) and Shit et al. (2020), which we refer to as
soft_DS and soft_clDS. These two loss functions are defined as

�Dice = 1 − soft_DS
�clDice = (1 − α)(1 − soft_DS) + α(1 − soft_clDS)

In our implementation, we selected α = 0.5 to equally weight
the soft_DS and soft_clDS scores in �clDice. Shit et al. (2020)
explored a variety of weights α ∈ [0, 0.5]. Since α = 0.5 is the
strongest recommended weighting of the soft_clDS score by Shit
et al. (2020), we selected this value to investigate a strong effect of
the soft_clDS score on training for this exploratory study, but this
value could be tuned to further optimize the results. However,
doing so would require training the model separately for each α.

Evaluation metrics: Given the predictions from a trained model
on a sample of n images, we report the average Dice score as a
final metric value for each test dataset:

Dice = 1
n

n∑

i=1
DSi

We also report the average centerline Dice score (clDice) as a
final metric value for each test dataset:

clDice = 1
n

n∑

i=1
clDSi

As additional metrics, we also refer to the image-wise average
precision and image-wise average recall of the test datasets while
evaluating the models in our experiments. All of these metrics
by model and BMP type are reported in Table 2.

Table 2. The test set results summarized for each BMP type by model name and specification.

Experiment Design Results

BMP Model name LiDAR ImageNet Sampling Loss Dice Score clDice score Precision Recall

gw baseline no no sys dice 0.494 0.538 0.567 0.507
gw lidar yes no sys dice 0.520 0.573 0.596 0.532
gw imagenet yes yes sys dice 0.515 0.569 0.580 0.536
gw pps yes yes pps dice 0.585 0.648 0.608 0.638
gw cldice yes yes pps cldice 0.561 0.665 0.553 0.652

pd baseline no no sys dice 0.423 0.503 0.471 0.430
pd lidar yes no sys dice 0.603 0.692 0.643 0.609
pd imagenet yes yes sys dice 0.613 0.706 0.643 0.624
pd pps yes yes pps dice 0.635 0.732 0.643 0.666
pd cldice yes yes pps cldice 0.628 0.759 0.605 0.691

te baseline no no sys dice 0.334 0.389 0.403 0.345
te lidar yes no sys dice 0.548 0.623 0.609 0.557
te imagenet yes yes sys dice 0.593 0.670 0.639 0.604
te pps yes yes pps dice 0.623 0.704 0.656 0.639
te cldice yes yes pps cldice 0.613 0.731 0.618 0.668

wa baseline no no sys dice 0.178 0.214 0.228 0.198
wa lidar yes no sys dice 0.405 0.471 0.477 0.408
wa imagenet yes yes pps dice 0.386 0.450 0.449 0.398
wa pps yes yes pps dice 0.485 0.554 0.513 0.535
wa cldice yes yes pps cldice 0.475 0.582 0.470 0.556

NOTE: We report the average Dice score, clDice score, precision, and recall for each model on their respective test sets. Refer to Section 4 for experiment abbreviations.
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Figure 4. A visual summary of our experimental pipeline. We trained and evaluated five experimental models for each BMP type by calculating the Dice and clDice scores
across all images in each training set. Refer to Section 4 for experiment abbreviations.

4. Experiments

For each of the four BMP types, grassed waterways (gw), pond
dams (pd), terraces (te), and WASCOBs (wa), we implemented
a set of experiments to compare the performance of various U-
Net models. We began with a “baseline” model that included
only color-infrared remote sensing imagery (Section 4.1). Sub-
sequently, we included the LiDAR-derived hillshade imagery in
our “lidar” model (Section 4.2) and then used pretrained weights
from Imagenet in the “imagenet” model (Section 4.3). Train-
ing data sampled via probability-proportional-to-size sampling
rather than systematic sampling was used to train the “pps”
model (Section 4.4). Finally, the topology-preserving centerline
dice loss function guided the optimization of the “cldice” model
(Section 4.5).

To determine whether a model produced segmentations with
higher performance than the previous model, we used a sign-
test (Conover 1999) to compare the DSi and clDSi scores on
the test set images i ∈ 1, 2, . . . , 500 from Model A to the
respective scores from Model B, that is the tuple (Ai, Bi). These
scores ranged between 0 and 1 and were not necessarily nor-
mally distributed. The nonparametric sign-test is appropriate
for our application because it only requires that the subjects
are randomly sampled from the population and each sample
is paired (Conover 1999). By randomly selecting units from
the population of 0.5 mi2 units across Iowa and comparing the
scores of two models on each unit, we satisfied these conditions.
The more powerful Wilcoxon signed-rank test (Conover 1999)

could not be used because some of the paired differences did
not appear to have symmetric distributions. Under the null
hypothesis for the sign-test, we assumed the distribution of the
difference of scores Ai−Bi had a median centered at 0. We tested
the one-sided alternative hypothesis that the pairs of differences
Ai − Bi were centered about some median > 0, implying that
Model A had higher performance than Model B. We used the
“rstatix” R package to implement this test with a Bonferroni
adjustment between the five sequential models for each BMP
type (Kassambara 2019).

Figure 4 summarizes this experimental pipeline visually,
including the evaluation step where we compared the Dice and
clDice scores on the test datasets for each experiment and BMP
type. We chose to evaluate these models sequentially to reduce
the number of models that would need to be trained rather
than completing a factorial design. We expect that the unex-
plored interactions in our experimental design would either
not be significant or not necessarily more informative than
the order presented to merit the computational time required
to complete a full factorial analysis. When we compared the
models in this sequential design, the new model (Model A) was
compared to the previous model (Model B) when evaluating the
significance of the sign-test at the 0.05 level with the Bonfer-
roni p-value adjustment. We report the results and significance
for each of these comparisons in the supplementary materials.
We also include the significance of these tests plotted above
the bar for each model in Figure 5, indicating whether each
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Figure 5. The average Dice and clDice scores across the test set for each model and BMP type. We used a sign-test with a Bonferroni p-value adjustment at the 0.05
significance level to test for significant improvement in model performance between models for each BMP type. An asterisk (*) above the average Dice or clDice score
indicates this model had significantly higher performance on the test set compared to the model to its left. Refer to Section 4 for experiment abbreviations and descriptions.

sequential model significantly increased performance on the test
set according to a sign-test.

4.1. Color-Infrared Only Imagery: Baseline

The baseline model is comparable to the U-Net model described
by V.S. Martins (2020). Only color-infrared remote sensing
imagery was included as training data for this model. Systematic
random sampling was used to sample 1000 training units for
each BMP type. In this experiment, the Deep Residual U-Net
model with the Resnet50 encoder architecture was trained with-
out ImageNet pretrained weights using the dice loss function for
each BMP type. We hypothesized the baseline model would have
the worst performance.

4.2. Incorporating LiDAR-Derived Hillshade: lidar

For the lidar model, we incorporated a LiDAR-derived hillshade
product as a fourth channel in addition to the three-channel
color-infrared imagery. The same units included in the training
data samples for the baseline model were used for each BMP
type. Transfer learning from ImageNet pretrained weights was
not performed. The dice loss function was used to optimize this
four-channel model for each BMP type. We hypothesized the
performance would improve for pond dam, terrace, and WAS-
COB segmentation with the addition of the hillshade channel,
given the structural nature of these BMPs, compared to the
baseline model.

4.3. Transfer Learning with ImageNet: imagenet

Deep learning models trained on independent segmentation
tasks may be applied to new tasks in a process called transfer
learning (Oquab et al. 2014; Marmanis et al. 2016). The param-
eter weights from a previously trained network may be used
to initialize the parameters in a new task with the same model
architecture. Many remote sensing datasets are not as extensive
as other classification datasets such as ImageNet (Deng et al.
2009). These datasets can still provide useful information via
transfer learning due to their training on vast sets of images and
labels (Iglovikov and Shvets 2018).

Our imagenet model used transfer learning, incorporating
pretrained weights from a Resnet50 encoder previously trained
on the ImageNet dataset. ImageNet includes over 3.2 million
images and has been used to train high-performing image clas-
sification models (Deng et al. 2009). Using the Segmentation
Models Python library with Keras (Chollet 2015; Yakubovskiy
2019), we were able to load the weights from the ImageNet
model into the encoder parameters in our model (the param-
eters on the left side of the “U” diagram in Figure 3). The
remote sensing data sources, training sampling scheme, and loss
function remained the same as the previously presented lidar
model. To incorporate the pretrained weights in this model,
which were derived from a three-channel model, we applied an
extra 1×1 convolutional layer to convert the four-channel color-
infrared and lidar imagery into three channels. We were uncer-
tain whether the performance of this model would improve
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Figure 6. Terrace segmentation results for the baseline and lidar models in comparison to the reference image derived from the Iowa BMP Mapping Project. The color-
infrared and LiDAR-derived hillshade images for each example are also provided. These results compare a model trained with only color-infrared imagery (baseline) to one
trained also with LiDAR-derived hillshade imagery (lidar).

compared to the lidar model, but we expected the performance
would at least remain similar.

4.4. Probability-Proportional-to-Size Training Data
Sampling: pps

Rather than using systematic random sampling, for the pps
model we used the probability-proportional-to-size random
sample as described in Section 3.1 to select the training data

for each BMP type. These 1000 training units were selected to
include more examples of each BMP per sampled unit on average
compared to the systematic random sample. In this experiment,
we included the color-infrared and LiDAR-derived channels,
pretrained ImageNet weights via transfer learning, and used the
dice loss function. We hypothesized the performance of this
model would improve compared to the imagenet model due to
the relative increase in the amount of each BMP type included
in the training images.
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Figure 7. Grassed waterway segmentation results for the imagenet and pps (probability-proportional-to-size sample) models in comparison to the reference image derived
from the Iowa BMP Mapping Project. The color-infrared and LiDAR-derived hillshade images for each example are also provided. These results compare a model trained via
systematic random sampling (imagenet) to one trained via pps sampling (pps).

4.5. Topology-Preserving Centerline Dice Loss Function:
cldice

Finally, the cldice model was built on the same specifications of
the previous model, but we used the centerline dice loss function
rather than the standard dice loss function during training. The
centerline dice loss function, clDice, was designed to preserve
the connectedness of linear features, as described in Section 3.5.
For this model, we used the pps training sample of color-infrared
and LiDAR-derived channels to train the U-Net model with

pretrained ImageNet weights. We hypothesized the clDice score
would improve compared to the pps model.

5. Results

Here we evaluate the models presented in Section 4 and discuss
the conclusions that may be drawn from these experiments.
To evaluate these models, an independent set of 500 test units
was selected for each BMP type as described in Section 3.1.
We evaluated these models on the test units only after all final
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Figure 8. WASCOB segmentation results for the imagenet and pps (probability-proportional-to-size sample) models in comparison to the reference image derived from
the Iowa BMP Mapping Project. The color-infrared and LiDAR-derived hillshade images for each example are also provided. These results compare a model trained via
systematic random sampling (imagenet) to one trained via pps sampling (pps).

model parameters and experimental settings had been selected.
In Table 2, we present the average Dice scores, clDice scores,
precision, and recall for the test datasets by BMP type and model.
Refer to the supplementary materials for the standard deviations
of the average Dice and clDice scores. In Figure 5, we plot
the average Dice and clDice scores and report the significance
of each sequential model comparison according to pairwise
sign-tests as described in Section 4. The exact statistics and p-
values for each of these tests are provided in the supplementary
materials. Additionally, we report both the validation and test set

average Dice scores in the supplementary materials to demon-
strate a lack of evidence of overfitting in these models.

5.1. LiDAR-Derived Hillshade Imagery Improved
Performance

Given the significant increase in Dice and clDice scores between
the baseline and lidar models for all BMPs (Figure 5), we can
strongly conclude that including the LiDAR-derived hillshade
imagery increased segmentation performance across all BMPs.
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Figure 9. Grassed waterway segmentation results for the pps (probability-proportional-to-size sample) and cldice models in comparison to the reference image derived
from the Iowa BMP Mapping Project. The color-infrared and LiDAR-derived hillshade images for each example are also provided. These results compare a model trained via
standard Dice loss (pps) to one trained via centerline Dice loss (cldice).

The pond dams, terraces, and WASCOBs have strongly ridged
structures that are often easier to identify in the hillshade
image compared to the color-infrared. Model performance also
increased for segmenting grassed waterways when adding the
LiDAR-derived channel, but not as dramatically as the other
BMP types.

Figure 6 shows the effect of incorporating the LiDAR-derived
hillshade imagery by comparing segmentation results for ter-
races between the baseline and lidar models. In each example,
the lidar model produced a segmentation that more closely

matches the reference image derived from the Iowa BMP Map-
ping Project. In example A, many more of the terraces were
recognized after including the LiDAR-derived hillshade image
in the model. In example C, several linear features the model
incorrectly labeled as terraces when using the color-infrared
imagery alone were corrected. The segmentation results still
have room for improvement, as seen in example E, with many
of the terraces remaining unidentified, but the positive effect
of including the LiDAR-derived hillshade channel was strongly
supported by most examples in the test data.
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Figure 10. Pond dam segmentation results for the pps (probability-proportional-to-size sample) and cldice models in comparison to the reference image derived from the
Iowa BMP Mapping Project. The color-infrared and LiDAR-derived hillshade images for each example are also provided. These results compare a model trained via standard
Dice loss (pps) to one trained via centerline Dice loss (cldice).

5.2. ImageNet Transfer Learning Did Not Generally Affect
Performance

The results summarized in Figure 5 suggest the inclusion of
pretrained weights from ImageNet transfer learning did not
largely affect segmentation performance. For the grassed water-
way, pond dam, and WASCOB model comparisons, the null
hypothesis of the sign-test was not rejected between the lidar and
imagenet models. There was a significant improvement between
the lidar and imagenet models for only the terrace BMP type. It
is possible that the efficiency of model convergence increased

slightly for the imagenet models, in general. Given enough
epochs, however, it seems the models performed similarly with
or without the inclusion of the pretrained weights for these
segmentation tasks.

5.3. Probability-Probability-to-Size Random Sampling
Improved Performance

The average Dice and clDice scores between the imagenet model
(trained on a dataset selected via systematic random sampling)
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and the pps model (trained on a dataset selected via probability-
proportional-to-size sampling) increased significantly for all
BMP types (Table 2). By magnitude, the increase in segmenta-
tion performance was especially notable between these models
for the grassed waterways and WASCOBs. We hypothesized
segmentation performance would improve for the pps model
due to the relative increase in the amount of each BMP type
included in the training images. This increase may have helped
to offset the highly imbalanced nature of the data between the
BMP and background classes. When we used the pps models
on the test datasets, selected via systematic random sampling,
we did not see evidence of overfitting. This indicates that the
pps sampling method still generalized to the population while
increasing performance.

Figure 7 shows examples of grassed waterway segmentation
between the imagenet model and pps model. In examples A–C,
the total area of grassed waterway correctly recognized by the
pps model increased compared to the imagenet model. This is
true as well in example D, but there is some evidence that the
pps model may have more often over-predicted the amount of
grassed waterway compared to models trained with systematic
random sampling. This phenomenon is also evident in the rel-
ative increases of precision and recall reported for these models
in Table 2. The increase in average recall was greater than the
increase in average precision indicating that the pps model may
have recovered more of the BMP of interest, but in doing so, it
may have also included more false positive predictions.

Similarly, Figure 8 gives examples of WASCOB segmentation
between the imagenet and pps models. The increase in segmen-
tation performance was especially notable for diagonally aligned
WASCOBs among these examples. It is likely that WASCOBs
in a variety of orientations were included at a higher frequency
in the pps training dataset, increasing the average segmentation
performance. The increase in performance was notable in all
examples A–E, but the increase in false positive predictions
should also be noted. In example C, there were areas predicted
as WASCOBs that were not included in the reference image.
However, we can see that these areas may be WASCOBs that
were simply not included in the Iowa BMP Mapping Project
database. This is a problem that often exists in machine learning
tasks. There may be many incorrectly labeled features in the ref-
erence data, which complicates both the training and assessment
of machine learning models.

5.4. Centerline Dice Loss Preserved the Topology of Some
Features

It is difficult to come to a definitive conclusion about the perfor-
mance of the centerline Dice loss (clDice) function compared
to the standard Dice loss. In Figure 5, it can be seen that seg-
mentation performance for the cldice model increased signif-
icantly compared to the pps model when measured via clDice
score, but the average Dice score did not significantly increase.
While these metrics are similar, the functions measure different
characteristics. By using the clDice loss function, the model is
trained to preserve the centerline of the learned features. To eval-
uate how well this topology-preserving characteristic affected
general performance, we considered some example test cases.

Figures 9 and 10 show segmentation results for the cldice model
compared to the pps model for grassed waterways and pond
dams, respectively. The topology-preserving property was more
pronounced for grassed waterway segmentation than pond dam
segmentation.

In Figure 9, examples A–C show grassed waterways that
had better preservation of topology in the cldice model seg-
mentations compared to the pps model. Each of these grassed
waterways had a break in its connectivity in the pps segmen-
tation, whereas the connectivity was preserved by the cldice
model. There were cases, but relatively fewer, where the opposite
applied, however, as shown in example D. In general, it seems
that the clDice loss function may have helped to preserve topol-
ogy for grassed waterway features and other BMPs that have
lengthy connected regions, such as terraces.

In Figure 10, we see that the performance of the clDice
loss function for pond dams was less promising. While both
the pps and cldice models gave good segmentation results in
general (example A), breaks in connectivity may have happened
just as often or more often when using the clDice loss func-
tion compared to using the standard Dice loss for pond dams
(examples B–E). In example B, one long pond dam was broken
up into many small, unconnected pieces by the cldice model.
These results may have occurred because the majority of pond
dams have relatively short, straight embankments. The clDice
loss function may have learned these centerline characteristics
without the same flexibility as the standard Dice loss function,
resulting in pond dam segmentations that did not generalize as
well to bent, angled, or lengthy cases.

5.5. Segmentation Performance Varied by BMP Type

From the table of average segmentation results (Table 2) and
the figures that demonstrate segmentation for each BMP type,
it seems that average segmentation performance was not equal
among BMPs. However it is likely that identifying some of these
BMPs via segmentation is more difficult than others due to
their variable structural and vegetative features, which may also
affect the accuracy of the reference data itself. For example,
grassed waterways have less pronounced structural properties
than other BMPs. Further inspection of the Iowa BMP Mapping
Project database revealed that many ditches may have been
wrongly classified as grassed waterways and there may have been
many that were missed. Furthermore, many of the grassed water-
ways were not actually grassed when captured, making these
grassed waterways harder to recognize using color-infrared
imagery from a single time point.

It seems that there may also be many errors in the WASCOB
dataset. Our best-performing models often recognized features
that may truly be WASCOBs but were not labeled in the Iowa
BMP Mapping Project. The similarity between terraces and
WASCOBs also complicated segmentation. Overall, however,
the segmentation results for the pond dams and terraces in
this project were especially promising. We have shown that
the use of LiDAR-derived hillshade projects may be used to
improve segmentation, especially for the predominantly struc-
tural BMPs. Our further experiments demonstrated methods
to further increase segmentation performance by using the
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probability-proportional-to-size sampling method and clDice
loss function (at least according to clDice score) across the BMP
types generally.

6. Conclusion

In this article, we have presented a series of experiments that
demonstrate progress toward an automated method of BMP
mapping via deep learning. Given the results for several BMP
types, including grassed waterways, pond dams, terraces, and
WASCOBs, we have shown that LiDAR-derived hillshade prod-
ucts are an important source of imagery for BMP segmen-
tation. We have also demonstrated that using a probability-
proportional-to-size sampling method improved segmentation
performance among these highly imbalanced classes. This
method of sampling the training datasets improved model
performance while remaining generalizable to the population.
Finally, we compared centerline Dice loss performance to stan-
dard Dice loss and we found the centerline dice loss helped
to preserve the connectedness of linear features, particularly
grassed waterways. This article expands previous research using
deep learning to identify soil erosion and water conservation
BMPs in remote sensing imagery and it may further help to
generate a framework for automated monitoring of the use of
BMPs across the Midwestern United States. Understanding the
trends of the use of BMPs over time and identifying locations to
target future installations of BMPs could advance conservation
efforts in accordance with the 2008 Gulf Hypoxia Action Plan.

Supplementary Materials

The Supplementary Materials include four additional tables of results: test
set results with standard deviations, pairwise sign-test results for each
model comparison using the Dice score and the clDice score (separately),
and a comparison of Dice scores on the validation and test sets.
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