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To ensure the food, fiber and energy supply for a global population of 9.7 billion people by 2050, 

and increase biosecurity and social stability under projected climate change scenarios, we need to 

create crop plants that deliver more nutritional value and higher yields while requiring lower inputs 

(e.g. water and nutrient) and can resist local environmental challenges. To this end, plant scientists 

are developing and adopting cutting edge advances in plant biology to establish novel traits in crop 

plants; however, greater knowledge of factors that influence crop growth and development is 

needed to improve plant breeding development pipelines. 

During recent decades, there has been a tremendous increase in throughput and decrease in cost of 

genome sequencing (Shendure and Ji, 2008). As a result of advancements in next generation 

sequencing (NGS) technologies, many biological fields including plant breeding and genetics have 

been revolutionized. Plant breeders can use the high throughput data generated from NGS to 

genotype mapping populations for gene or quantitative trait loci (QTL) discovery as well as predict 

and select desired individuals based on their genome estimated breeding values (Varshney et al., 

2014). Phenotyping, however, is a requirement for successful implementation of molecular 

mapping and breeding strategies including linkage mapping, genome-wide association mapping 

(GWAS), marker assisted selection (MAS), and genomic selection. The level of throughput and 

data dimension obtained in estimation of phenotype has lagged behind that of genotype (White et 

al., 2012; Araus and Cairns, 2014). The challenge has shifted from understanding the genotype to 

understanding the phenotype – characteristics of a plant that are determined by the effects of 

genetic background, production environment, and management factors such as irrigation and 

fertilizer treatments.  

Tackling the Phenotyping Bottleneck 

More efficient plant breeding methodologies are needed to increase crop productivity to feed an 

ever-growing world population (Tester and Langridge, 2010). Most research programs are still 

relying on manual or semi-automated systems for collecting plant phenotype data resulting in high 

costs and low-throughput (White et al., 2012; Araus and Cairns, 2014). Low-throughput 

phenotyping is time-consuming and laborious, which often forces breeding programs to limit 

selection to yield evaluated in multi-environment, multi-year trials; even though the heritability of 

yield is among the lowest of commonly evaluated traits (Furbank and Tester, 2011). 

Plant breeders and geneticists are interested in increasing the throughput of phenotyping at each 

stage of their breeding programs. Increased throughput is required because the typical breeding 



programs screen thousands of individuals at different stages of development. However, major 

changes have not been made in the phenotyping methodology over the years (Cooper et al., 2014). 

A relatively new approach to phenotyping, based on remote and proximal sensing, also known as 

High Throughput Phenotyping (HTP) or Phenomics in the Plant Science literature, may provide 

new tools for tackling the phenotyping bottleneck in plant breeding (Furbank and Tester, 2011; 

Araus and Cairns, 2014). HTP can increase the genetic gain by increasing selection intensity, 

phenotype repeatability, and trait heritability (Araus et al., 2018). Selection intensity is a function 

of the number of lines selected compared to the number of lines evaluated. With HTP, larger 

populations can be evaluated and more stringent selection criteria can be imposed. Responses to 

selection can be increased by minimizing the non-genetic variance through increasing trait 

repeatability and heritability (Bernardo, 2014). HTP also allows for increased replication and 

reduced between-measurement error by removing the human subjectivity in phenotyping. 

However, more work is needed to develop and optimize these systems. 

High-Throughput Phenotyping Requires a Convergence of Technology in Agriculture 

Phenomics is a key link between progress in plant genomics and novel trait development in 

agronomic crops because of its focus on assessing and quantifying plant traits at multiple scales. 

The phenotype of an organism refers to the observable morphological and physiological properties 

of the organism. Yet, plant phenotyping has been a bottleneck that limits efficient adoption of 

genomic tools to improve crop breeding.  Until recently, the majority of plant phenotyping data 

have been manually collected and were low throughput, time-consuming, and labor intensive. 

Consequently, these traits were often limited to specific growth stages and did not reflect the 

dynamic response of crop plants to variations in environmental conditions. Recent advances in 

sensing technology, machine learning and computer vision technologies offer the opportunity of 

high throughput measurements of intricate morphological and biophysical traits of plants, 

providing us the capabilities to ascertain plant response to environmental variation both in 

controlled and field environments. These advancements empower plant biologists to acquire 

extensive information on key plant traits, therefore are of paramount importance in the quest to 

address current and emerging issues related to food security, link phenomics to underlying genes 

and gene networks, optimize yields, achieve resource use efficiencies (e.g., water, nutrient, and 

light), understand resistance to biotic and abiotic stresses, and develop biomass for bioenergy and 

other valuable traits in plants (Das Choudhury et al., 2020).  

Remote sensing has been utilized to generate agricultural data for a number of years in a variety 

of ways.  Remote sensing is defined as the field of deriving data from earth’s land and water 

surfaces using overhead images that are produced using reflected or emitted light from some region 

of the electromagnetic spectrum (Campbell and Wynne, 2011).  Recent technological 

advancements in remote and proximal sensing have made it possible to extract massive volumes 

of morphological, physiological, and agronomic data from crops, but complexities in data 

processing, feature extraction, and data analytics make predictions of crop performance from 

remote sensing data a challenge. Multi-Sensor systems have been integrated on air-borne platforms 

for mobile mapping of agricultural fields (El-bahnasawy et al., 2018) and methods for spatial and 

temporal calibration have been developed (Habib et al., 2016; Habib et al., 2017; Ravi et al., 2018). 

Analytical tools for image and data processing, compression and integration have also been 

developed (Zhang et al., 2016; He et al., 2018; Ribera et al., 2018).  Complete pipelines for 

measuring and predicting plant productivity and performance from multi-modal data, and linking 



all the way to changes in genotypes are being developed by different institutions and for diverse 

crops (Chen et al., 2017, 2018; Masjedi et al., 2020). High-throughput controlled environment 

phenotyping pipelines that include robotic, environment controlled, fully automated systems have 

been developed for greenhouses and growth chambers (Cotrozzi et al., 2020). Additional plant 

phenotyping pipelines for measuring and predicting plant productivity and performance from 

remotely sensed data are needed. These may include both ground-based and airborne sensor 

platforms and sensing apparatus for high-throughput phenotyping. 

We propose the creation of a North Central regional plant phenotyping research project to promote 

advancements in phenotyping related research. This project will leverage established plant 

phenotyping facilities and capacities in research institutions in the North Central region and nurture 

research collaborations among scientists and engineers. Creation of this committee will coordinate 

multidisciplinary teams of scientists and engineers in the development of high-throughput 

phenotyping (HTP) facilities and systems in controlled and field environments. These systems will 

enable researchers to overcome the phenotyping bottleneck in plant science and crop improvement 

programs, thereby expanding our knowledge concerning the connection between genomics and 

predictive phenomics of key US crops at different sites across the region.  

The synergy of the regional HTP facilities across campuses will provide scientists and engineer 

unprecedented capability in conducting multi-site, hypothesis-based research. This science will 

characterize the impacts of biotic and abiotic environment, and production systems on the growth, 

productivity and resilience of various crops, hence providing greater accuracy in predicting crop 

performance under variable conditions. This committee will also catalyze and coordinate 

interdisciplinary research to facilitate the creation of novel knowledge of the impact of genome 

and environment interaction on plant phenotype, which eventually could result in increased 

productivity and sustainability of our agro-ecosystems. These efforts to develop complete 

pipelines for measuring and predicting plant productivity and performance from multi-modal data, 

and linking all the way to changes in genotypes of individual plants, is unprecedented, and is key 

for both mitigating climate change and sustainable agriculture intensification. 

Related, Current, and Previous Work:  

Multiple institutions in the NC region have invested heavily in plant phenomics research capacity 

in recent years. As founding members of this committee, we are interested in contributing to this 

collaborative effort. In the following, we detail each founding institution’s respective strengths 

that will serve as the basis of cross-institution science. 

At Purdue University, existing research teams are already contributing to the Ag-Alumni-Seed 

Controlled Environment Phenotyping Facility (CEPF) on campus and the Indiana Corn and 

Soybean Innovation Center (ICSC) for plant phenomics research at the Agronomy Farm. The 

CEPF is an HTP facility that enables high-throughput, non-destructive measurements on multiple 

traits of diverse crop species in a growth chamber that supports analyses of up to 256 plants 

simultaneously under precisely controlled environmental conditions. The ICSC supports field-

based phenotyping research on a >1600 acre research farm near campus. The phenotyping gantry 

in ICSC provides the unique capability to collect multi-mode, shade-less crop images in the field. 

Plants can be imaged every ten (10) minutes using multiple imaging systems. Similar remote 

sensing instruments are used in each environment including color (RGB), hyperspectral (400 – 



2500 nm), and thermal imaging systems. Light Detection and Ranging (LiDAR) systems are being 

used for 3-D plant detection and a new X-ray CT system for root imaging.  Combining these 

imaging systems and environments with image analysis pipelines will make it possible to conduct 

autonomous measurements on various traits of a variety of crops. 

The University of Nebraska-Lincoln has made significant investments in transformative 

HTPtechnologies at multiple scales. There are two controlled environment platforms and one field 

platform. The LemnaTec HTS is a growth chamber-sized system designed for imaging short or 

small plants (e.g., Arabidopsis and turf grass) or emerging seedlings of monocots and dicots (<12 

cm in height). The system is equipped with 4 types of imaging cameras (visible, thermal infrared, 

near infrared, and fluorescence). The LemnaTec3D Scanalyzer is a fully automated and 

environmentally controlled system with 672 pot capacity located in a greenhouse, with automated 

watering and weighing stations (for water manipulation), and 4 chambers equipped with cameras 

capable of collecting images from the top and/or side views (for 3D reconstruction) in the visible, 

infrared, fluorescent and hyperspectral range of each plant up to maturity or 2.5 m height. The 

Spidercam© Field Phenomics Facility is located at Eastern Nebraska Research and Extension 

Center, MEAD (ENREC). This is a 1 acre field phenotyping site that features the automated cable-

driven robotic system (Spidercam©, Austria) that carries multiple cameras (e.g., visible, near infra- 

red, hyperspectral, and multispectral) and sensors (e.g., micrometeorological, and LIDAR scanner), 

which can be accurately positioned over a plant or a plot for sensing and plant imaging. This is a 

high-resolution platform that can image plants/plots from germination to 6 m in height. This is the 

only Spidercam platform in the USA and the second in the world. The field site is also equipped 

with an advanced automated weather station, and a state-of-the-art subsurface drip irrigation 

system for precision water application at plot level (15*20 ft2). In addition, UNL and through the 

Center for Advanced Land Management and Information Technology (CALMIT) offers unique 

capabilities through its aircraft with Hyperspectral and Fluorescence capabilities, and tractor 

technologies. 

Iowa State University established the ENVIRATRON, which is a phenomics platform that enables 

researchers to monitor the performance of plants throughout their lifespan when subject to a variety 

of environmental conditions, including anticipated future environments. The ENVIRATRON 

permits researchers to incrementally alter critical variables to better simulate changing conditions 

that we face in the future.  The ENVIRATRON enables control of variables including temperature, 

day length, light intensity, humidity, CO2 levels and water potential in the soil and will be able to 

simulate current climatic conditions in different areas of the world and future climatic 

scenarios.The ENVIRATRON consists of an array of plant growth chambers to create different 

environmental conditions. Unlike commercial plant phenomics systems, plants are not conveyed 

out of the growth chambers to monitor their growth performance; instead, a rover with a robotically 

controlled arm periodically visits each chamber to image and analyze the plants. In addition to 

more standard RGB, fluorescence, near IR and IR imaging, sensors on the rover provide 

hyperspectral and holographic imaging and Raman spectroscopy. The robot-assisted sensing 

approach enables precise location-specific data acquisition, resulting in improved sampling 

strategies and data quality. 

The University of Minnesota has invested heavily in informatics and data management capabilities 

along with distributed low-cost sensing for phenotyping and envirotyping in recent years. As a 

founding member of this committee, UMN is interested in also contributing to this collaborative 



effort. These technologies are based in and maintained by the GEMS Informatics Center. The 

GEMS Informatics ecosystem consists of (1) an informatics platform that supports metadata 

creation and standardization, data cleaning, management, smart sharing, and analytics tools; (2) 

internet of things hardware and software technologies that connect scientific instrumentation in 

real-time to the GEMS core tools; and (3) GEMS API’s that include harmonized global gridded 

meteorological products, breeding tools for predicting GxExM performance, and pedigree 

cleaning, among others in the growing portfolio of GEMS API’s.  

 Other similar projects/committees 

There are fifty projects in the CRIS system that are related to plant phenotyping directly or 

indirectly, but with very diverse research interests that are different from what we are proposing. 

While we are proposing a synergizing mechanism to facilitate research in sensor development and 

application, as well as data analysis and management platforms to facilitate large scale research 

collaboration, of the above mentioned projects, seventeen (17) are research on cropping system 

and crop genetic improvement for specific stress tolerances,  eleven (11) are related to leveraging 

the development in automation or plant sensing technologies to facilitate improvement in breeding 

and management of specialty crops. Seven (7) of these projects focus on leveraging progress in 

data sciences/cyber systems in processing, management plant management data, four (4) of them 

are research on precision/smart-farm technologies, the rest are either about application of CRISP 

or automation technologies in crop breeding or management, or workshops as well as establishing 

research community. Two specific project, The BTT EAGER, Utilizing high throughput 

phenotyping approaches to advance plant breeding (1018322), and Integrated systems research 

and development in automation and sensors for sustainability of specialty crops(1017805), come 

with similar focus as what are proposed in this project. However, the former works only on 

improving corn breeding leveraging phenotyping technologies,  while the later focuses more on 

application of automation and sensing technologies in specialty crop production. 

There are three committees in the NIMSS (NC1210, NCERA 180, W3009) that specifically 

referred to the application of plant phenotyping technologies. However, NC1210 focuses on 

leveraging UAS to collect crop performance data, NCERA180 focuses more on precision 

agriculture rather than plant phenomics/phenotyping, and W3009 focuses on leveraging sensors 

and robotics exclusively on specialty crop-related studies. For this project, collecting remote 

sensing data and metadata in crop performance assessment and quantification is just one organic 

part of the overall goals. Development of proximal/remote-sensing platforms and novel sensor 

systems will also be emphasized in this project. High-throughput plant phenotyping systems 

development, application of high-throughput phenotyping systems in controlled-environments, 

development of data analysis methods and data management platforms are another aspect that 

differentiate the proposed project from the above committees.  

 Objectives:  

Improving crop production and performance to accommodate a growing global population and 

mitigate for climate change is one of the most important challenges for humanity in the 21st 

Century. Developing high-throughput phenotyping (HTP) strategies to evaluate crop plants for 

functional traits required to stabilize yield under variable environments and extreme weather 

events will be fundamentally important to a sustained increase in agricultural productivity. The 



NC plant phenotyping committee will catalyze and coordinate fundamental research to establish 

in-depth connections between the genomic background, phenotypic parameters, and the 

environmental and management contexts of key crops in the region. Although the project will 

support collaborative and multi-disciplinary research across many different plant species to 

develop HTP approaches for key functional traits, this committee will initiate pilot studies in maize 

to produce public data sets that support development of technologies and tools for data acquisition 

and processing, data analysis, and new methods in gene discovery that can be transferred to other 

species and systems as the research community grows.   

Pilot study in maize phenotyping 

This committee will initiate pilot studies in maize phenotyping in controlled and field 

environments to produce public data sets that support development of technologies, tools, and 

methods for (Objective 1) data acquisition and processing, (Objective 2) data analysis, and 

(Objective 3) new methods in gene discovery that can be transferred to other species and systems 

as the research community grows. A panel of diverse maize inbred and hybrid genotypes will be 

planted and phenotyped manually and by remote sensing in controlled and field production 

environments in multi-location trials.  Other crops and research communities will be integrated as 

interest grows. 

The specific objectives that will be addressed by the team include: 

1.  Novel technologies and platforms for data acquisition and processing will be developed for 

application in plant phenotyping research. 

a.  An array of remote sensing instruments and platforms will be developed and adapted 

to monitor plants in controlled and field environments. 

b.  Systems and methods will be developed to integrate multiscale sensing for data 

acquisition and processing. 

c.  New techniques to advance FAIR(ER) systems will be established to support 

processing, storage, and management of phenotypic data. 

d.  Data access mechanisms will be developed that encourage data sharing and respect 

intellectual property across plant phenotyping facilities and infrastructures. 

2.  We will develop fundamental methods in data analysis to integrate multi-modal and multi-

temporal data for trait prediction. 

a.  New methods will be developed to integrate multidimensional data from multiple 

sources (e.g. genetics, management, and environment) across space and time. 

b.  Mechanistic and empirical models will be developed to support trait prediction. 

c. High-performance systems and intelligent visualization will be developed. 



3.   We will explore methods to ascertain the integration of phenomic and genomic models to 

predict traits. 

a. Methods will be developed to predict phenotypes from multi-view image sequences 

captured by cameras in different modalities (e.g., visible light, fluorescent, hyperspectral, 

and infra-red) in diverse germplasm, environments and management systems. 

b. Genetic studies will be conducted to discover plant genes that contribute to agricultural 

productivity, sustainability, profitability and/or quality. 

Methods:  

1.     Novel technologies and platforms for data acquisition and processing will be developed 

for application in plant phenotyping research. 

Remote sensing instruments to monitor plants in controlled and field environments 

An array of remote sensing techniques will be developed and leveraged in plant monitoring in 

controlled and field production environments.  

RGB imaging: These imaging techniques will be used to explore static or dynamic plant 

characteristics based on time-series measurement of plants and to quantify dynamic plant traits 

such as biomass accumulation, leaf expansion, stem elongation, and fruit development. These traits 

are impractical to measure with the traditional destructive sampling method, but can be reliably 

estimated from time-series images of the plants. Three dimensional (3D) sensing technologies will 

be heavily leveraged in measurement of the variation in plant morphology and structure. 

Multispectral and narrow-band hyperspectral (HS) imaging, which includes imaging in the 

Visible/NearInfraRed (VNIR) and Short-wave infrared (SWIR) spectrum ranges  These imaging 

techniques will generate spectral information that can be used to predict plant leaf traits related to 

nutrient concentration (such as nitrogen, phosphorus, and potassium), physiology (such as 

chlorophyll, water content, and photosynthesis parameters), and metabolites (such as sucrose). Our 

research activities will focus on the deployment of hyperspectral sensors in controlled and field 

environments to acquire high-quality hyperspectral data of plants, as well as development of new 

spectral processing and modeling approaches to relate hyperspectral data to the target traits. 

Thermal infrared (IR) imagery: Thermal IR radiometry can be used to measure plant traits related 

to stomatal conductance and transpiration. Leaf stomata regulate the process of gas exchange 

between the plant and the atmosphere, and therefore play an important role in plant growth and 

water use. Thermal infrared sensing of leaf surface temperature is proved to be an indirect but 

effective approach to estimate leaf stomatal conductance, and shows the potential to rapidly 

differentiate genotypes for water-use related and drought stress related traits. 

X-ray Computed Tomography (X-ray CT): X-ray CT will be used to characterize above and below-

ground plant traits including Root System Architecture (RSA). X-ray CT brings the capability to 

non-destructively scan and quantify root systems growing in soil/soil-like growth media in 3D 

over multiple days. Recent progress in X-ray image processing has led to significant improvements 

in 3D RSA reconstruction and will be used to address fundamental questions in root biology such 



as (1) what genes control root branching in crops, (2) how roots respond to changes in 

environmental conditions and what genes triggers these responses, as well as (3) how roots respond 

to different soil physical properties and nutrient conditions. 

Chlorophyll fluorescence imaging: These systems will be used to acquire information on key 

photosynthesis processes and biochemical pathways that are directly or indirectly related to 

photosynthesis (Kalaji et al, 2016; Chen et al., 2019). Knowledge established using these systems 

will facilitate the determination of the mechanisms(s) for desirable traits which would lead to 

strategies for enhanced stress tolerance and improved yield potential in a wide variety of crops in 

different climate zones.  

Light Detection and Ranging (LiDAR): Discrete return LiDAR will provide information required 

for extracting plant structure including plant height, geometric structure, and canopy architecture. 

Remote sensing platforms 

Numerous sensor platforms have been developed for plant phenotyping in controlled and field 

production environments including manually operated carts (Bai et al., 2016; Jimenez-Berni et al., 

2018), tractor- and sprayer-based vehicles (Andrade-Sanchez et al., 2014; Jiang et al., 2018), field 

robots (Underwood et al., 2017; Shafiekhani et al., 2017), UAS (Sankaran et al., 2015; Shi et al., 

2017), fixed overhead gantry/cable-driven systems (Virlet et al., 2017; Kirchgessner et al., 2017), 

and stationary sensor networks. In this project, we will further develop and explore new 

applications of these platforms for various crop species and environmental conditions. 

UAS-based platforms will be developed to incorporate more advanced sensors for field 

phenotyping. Advanced sensors are challenging for UAS because more sophisticated integration 

between the sensors and the UAS platform and more rigorous sensor calibration are needed for 

high quality data collection.  

Ground-based robotic systems and platforms will be developed to support field phenotyping 

applications. Ground robotic systems can have a larger sensor payload than UAVs and images 

from the ground robotic systems are usually of high resolution. Research efforts will focus on 

innovations in phenotyping robotic systems including development of robotic platforms that can 

automatically and persistently navigate in crop fields, new contact and non-contact probing devices 

that can measure traits from leaves, stems, panicles, and other plant organs, and new coordination 

schemes between the ground robots and UAVs. 

Sensor network based platforms will also be developed for phenotyping. There are two advantages 

of the sensor network approach compared to other platforms.  First, soil sensors can be 

incorporated into the sensor node along with the plant sensors, relevant soil properties such as soil 

temperature, soil moisture, organic matter, and pH can be measured and recorded at higher spatial 

density. Second, sensors on the stationary sensor network can take measurements at very high 

temporal resolution and will enable new information being captured and analyzed (for example, 

event detection related to disease inception), as well as the new methods of data analysis (deep 

learning with videos). 

 



Systems and methods to integrate multiscale sensing for data acquisition and processing 

Multiscale sensing includes sensors that are placed in indoor facilities, static or mobile in the field, 

in the air deployed on unmanned aerial vehicles, or in outer space on satellites. Integrating across 

different scales and sensing platforms (with varying levels of noise in the data) presents challenges 

in data integration and management, and also demonstrates the need of research on systems and 

methods to maintain privacy and security of data. Traditional and new approaches in other fields 

such as computer science and the geospatial sciences will be evaluated and adapted to address 

these issues, including analyses of ontology creation and integration across the plant and 

computational sciences to support automated reasoning (e.g. see Haller et al., 2017; OGC, 2016; 

Singleton et al., 2016; Gooch and Chandrasekar, 2017), sensor data provenance approaches to 

specify the data quality from point of collection through to use (Fredericks and Botts, 2018), data 

harmonization approaches (Kugler et al., 2015; Alber et al., 2019), and mechanisms for 

decentralized secure and private data management and sharing (Truong et al., 2019). 

New techniques to support processing, storage, and management of phenotypic data 

Data storage, processing, and managing systems are the backbone of phenotyping. These multiple 

data types at different spatiotemporal scales often lack the necessary metadata that make them 

findable, accessible, interoperable, and reusable. Furthermore, data need to be managed ethically, 

respecting informal and formal intellectual property, and connected to reproducible scientific 

workflows. These principles apply to farmer, scientific, and agribusiness generated data sources. 

Identifying and deploying new techniques to advance such FAIR(ER) systems is a critical research 

objective (Wilkinson et al., 2016), including, but not limited to, advances in ontology 

standardization, spatiotemporal data harmonization, and genomics x environment x management 

integration (Allan et al., 2017). Other challenges in data platform development that will be 

addressed include efforts to study: (1) the linkage of secure cloud computing environments with 

decentralized architectures data collection, storage, and processing systems (see Lavassani et al. 

2018), (2) semi- and fully-automated phenotyping systems management (Debauche et al. 2017), 

(3) selective storage and archival procedures and systems to manage mid- and long-term data (see 

National Agricultural Library, Ag Data Commons; Beagrie 2006), and (4) developing modularized 

data transfer standards and systems that tightly couple metadata and data (e.g. GEMS 2020; 

OpenTEAM 2020; OATS 2020; Selby et al. 2019). 

Data access mechanisms that encourage data sharing and respect intellectual property across 

plant phenotyping facilities and infrastructures 

Phenomics at scale requires access to interoperable data across centers and sectors. Today, much 

of the phenomics data exist in the private sector or in inaccessible forms in research labs. Creating 

a robust phenomics data sharing ecosystem requires standardizing workflows and protocols in a 

way that also respects intellectual property. This objective will focus on developing the expertise, 

scale, workflows, and standardized approaches that are deemed broadly acceptable to both private 

industry and public research labs. This will unlock the scientific and economic promise of cross-

center and cross-organization crop phenomics.  In particular, we will advance existing state-of-

the-art approaches to secure data sharing and storage architectures (Allan et al., 2017). These 

include decentralized and networked approaches to shared computing resources across different 

federated hubs (Celesti et al. 2016) and furthering secure, multi-party computation approaches in 



ways tailored for the plant sciences (Cramer et al. 2015). Work in such spaces would require 

additional advances in computing infrastructure to support decentralized model training 

(e.g.  horizontal and vertical federated learning; Yang et al. 2019), as well as many other domains. 

2.   We will develop fundamental methods in data analysis to integrate multi-modal and 

multi-temporal data for trait prediction. 

New methods to integrate multidimensional data from multiple sources across space and time 

The multi-modal data generated in the project will be from multiple sources and dimensions 

including the genomic, weather, soil, and phenotyping data from various indoor and field based 

sensors across geographical areas and seasons. Determination of how plants respond to the 

environment has become possible due to advances in high-throughput imaging technologies 

coupled with advances in deep learning and image analysis (Singh, 2016; Pound, 2017; Namin, 

2017). Current models that are built on the legacy of linear responses have good predictive ability 

(Heslot, 2012) but become limited when trying to predict phenotype and genotype into new 

parameter spaces, e.g., new genotype combinations and new, previously untested (or changing) 

environments (Burgueño, 2012). In this project, we will develop predictive models that integrate 

the latest machine learning (ML) and artificial intelligence (AI) techniques and push the frontier 

of data science. Such new models will enable us to capture and understand the effects of gene-by-

environment (and by-management) interactions on phenotype that are needed to provide 

predictions for breeding cultivars for future and changing climates (National Academies of 

Sciences, 2018).  

Time series modeling for phenotypic trait prediction can also provide new opportunities for plant 

phenotyping by analyzing an image sequence as a discrete time series. The proposed research will 

consider modeling of a phenotypic time series to (1) predict phenotypes for missing imaging days 

due to mechanical breakdown of the system or for a time in the future based on analyzing past 

measurements; (2) predict a composite phenotype from its one or more constituents and (3) bridge 

the phenotype-genotype gap to contribute in the study of improved crop breeding and 

understanding the genetic regulation of temporal variation of phenotypes. 

Integrating Mechanistic and Empirical Models to Support Trait Prediction 

While empirical methods have been used to predict and model complex plant phenotypes under 

dynamic environmental conditions, modeling crop performance for complex traits is a challenge 

given the impacts of genotype by environment interactions (Cooper et al. 2002). We will explore 

methods that integrate (1) simplified crop growth models to predict how relatively fixed traits (e.g. 

leaf canopy architecture, relative flowering time) play different and non-linear roles in overall 

plant performance under different environmental conditions or agronomic management regimes, 

(2) evolutionary models that simplify the use of simplified crop growth models (CGMs) to predict 

how various traits will effect field yield in different environments (Millet et al., 2019; Technow et 

al., 2015), (3) evolutionary algorithms to simplify and reduce the dimensionality of environmental 

data to a core subset of traits that impact plant growth. Well-developed crop growth models as well 

as high-throughput phenotyping approaches have been developed in recent years (Demarez et al., 

2008; Casa et al., 2010; Parent et al., 2019; Jiang et al., 2019); however, strategies that 

accommodate crop growth models as part of high-throughput phenotyping pipelines have not been 



thoroughly explored. Efforts will be made to develop phenotyping analysis workflows and 

scenario analysis tools for execution of crop models for experimental plots based on observed and 

remotely sensed phenotypic data. 

Development and utilization of high-performance systems and intelligent visualization 

Compared to many existing machine-learning approaches, the main challenges with our target 

research are two folds. First, our design needs to holistically consider highly complex data to 

enable interactive exploration that links multiple views of various different data representations. 

Second, various machine-learning techniques are characterized by different data access and 

communication patterns (Dryden et al., 2019), making it extremely difficult to design a high-

performance system in support of these techniques in a unified fashion. We will develop high-

performance system support that will directly account for partitioning and distribution schemes, 

stores, and computation models for various data. We will study visualization and interaction 

techniques to appeal to users’ familiarity with them and facilitate comparison studies exploiting 

the strength of different machine learning techniques. 

3.  We will explore methods to explore the integration of phenomic and genomic models to 

predict traits. 

Methods to predict phenotypes in diverse germplasm, environments and management systems 

Predicting how different genotypes will perform across diverse environments is a key challenge in 

plant genetics and plant breeding. Once a line has been genotyped it is generally possible to predict 

trait values for that line in a given environment if both genetic and trait data is already available 

for a large number of related lines in that same environment. However, if predictions are being 

made in a previously untested environment, or the line is not closely related to those lines which 

have been tested in the environment, the accuracy of prediction drops rapidly. 

A number of approaches to predicting phenotype across environments have been explored in the 

past. The challenge is that there are many environmental factors and few observed environments. 

One approach to integrating both the impact of environmental factors and the genotype by 

environmental factor interactions directly within a genomic prediction model (Jarquín et al., 2014; 

Jarquín et al., 2017) requires more data than is presently available. We will seek to address this 

challenge by both working collaboratively across the multi-state hatch project to grow large trials 

of common genotypes across many controlled and field production environments under diverse 

management practices. The proposing institutions have experience working as members of the 

Genomes to Fields consortium and access to field sites that represent diverse environments and 

management regimes as part of their research and extension infrastructure. 

Once a modeling approach is found to be effective in a single context or for a single species, an 

area for future research would be the use of domain adaptation to transfer AI models from one 

crop species or one environment to another. Domain Adaptation is a machine learning setting 

where data from a source domain is used to predict a target domain, under the assumption that the 

source and target domains have different distributions (a.k.a., domain shift) but share some similar 

patterns. In unsupervised domain adaptation, the labels of the source domain data are available 



while the labels of the target domain data are not available. The task is to learn a model for the 

target data using the labeled source data and the unlabeled target data.  

Genetic studies to discover plant genes that contribute to agricultural productivity, 

sustainability, profitability and/or quality 

Just as limitations on the availability of large scale datasets of common lines in diverse 

environments have limited the development of tools to predict phenotype across environments, the 

same limitations on datasets have also constrained researcher’s ability to identify genes that 

contribute to phenotypic plasticity.  We will address this constraint by conducting large-scale trials 

of crop varieties under diverse environmental conditions to quantify plant responses to the 

environment. We will identify genes contributing to variation in plant responses using 

conventional GWAS and transcript level based analysis (TWAS) (Lin et al., 2017; Kremling et al., 

2019). These approaches have been shown to complement each other by identifying distinct 

subsets of genes which each contribute to controlling phenotypic variation for any given trait 

analyzed using both methods. Specific phenotyping strategies will include: 

4D plant phenotyping analysis: While not well-explored, image sequence analysis can address 

many complex unsolved computer vision tasks in phenotyping. We will explore the genetic 

regulation of the 3D phenotypes as a function of time. 

Plant stress classification and analysis of its temporal propagation: Machine learning techniques 

will be developed to identify signals from hyperspectral imagery for detecting and quantifying 

abiotic and biotic stresses, and by using suitable supervised and unsupervised classification 

techniques will classify the stress in different levels, e.g., mild, moderate and extreme. 

Event-based phenotypes: Machine learning techniques will be used to detect the timing of 

important events in the life cycle of a plant and use advanced tracking methods to automatically 

track the newly emerged organ throughout the plant’s life cycle (Samal et al. 2020).  

Ecophysiological and biophysical traits: Hyperspectral imaging will be used to predict variation 

in important plant biophysical and ecophysiological traits (Mazis et al., 2020). 

Efforts to model plant responses to the environment will initially utilize Bayesian Finlay-

Wilkinson regression (Lian and de los Campos, 2016) to partition variation in traits across 

environments into trait means, linear plasticity, and nonlinear plasticity (Kusmec et al., 2017; Miao 

et al., 2020; Wang et al., 2020). 

Measurement of Progress and Results: 

• Outputs:  

Achieving the stated objectives of this project will push the frontiers of predictive modeling, 

artificial intelligence, and analytics thereby seizing opportunities presented by the growing 

availability of data to improve the resilience and efficiency of food and agricultural production. 

Specific outputs in this project will include: 



1. New and existing high throughput phenotyping tools and technologies will be developed to 

provide the essential capabilities for assessing morphological and physiological responses of 

crops to changing environmental conditions. 

2. New techniques to advance such FAIR(ER) systems will be established to support processing, 

storage, and management of phenotypic data. 

3. Image analysis and data modeling strategies to quantify plant growth and development, 

morphological and physiological characteristics, and chemical composition. 

4. Improved models to predict the performance of diverse germplasm in untested environments. 

5. The integrated high-throughput phenotyping facilities will empower efficient plant biology 

assessment and gene discovery by leveraging non-invasive imaging, machine vision, 

spectroscopy driven by automated robotics and automated data pipeline based on high-

performance computing. 

6. Identification of genes controlling target traits that plant breeders can target for introgression 

into elite lines to develop new cultivars which will improve farmer profitability and 

sustainability. 

7. Contribute to the development of next-generation workforce. 

8. Increase the sustainability and productivity of agroecoystems and improve our capability to 

mitigate for climate change. 

9. Deliver science-based information in an effective and efficient way to ensure sustainability 

and profitability of the land. 

• Outcomes or Projected Impacts:  

Creation of this committee will coordinate multidisciplinary teams of scientists and engineers in 

the development of high-throughput phenotyping (HTP) facilities and systems in controlled and 

field environments. These systems will enable researchers to overcome the phenotyping bottleneck 

in plant science and crop improvement programs, thereby expanding our knowledge concerning 

the connection between genomics and predictive phenomics of key US crops at different sites 

across the region. This falls under USDA priority to increase production and food quality and other 

desirable traits and alleviate stresses, and reduce environmental impacts from climate change and 

extreme weather events (USDA Blueprint 2020).  

1. New remote sensing data acquisition and processing capacities will provide regional scientists 

and engineers un-precedent capability in surveilling and conducting hypothesis-based research that 

lead to better understanding on the impact of differences in weather, environmental conditions, 

and production systems on the growth and productivity of various crops, hence providing greater 

accuracy in predicting crop performance under variable conditions, this is key for mitigating biotic 

and abiotic stresses. 



2. Public datasets will enable further development and improvement of predictive models both 

within the multi-state hatch project and by outside groups unable to support large scale multi-

environment field trials. 

3. Advanced modelling strategies will provide biologists unprecedented capabilities in assessing 

the response of a wide variety of crops (e.g. corn, sorghum, soybean, wheat) to abiotic and/or biotic 

stresses, such as nutrient deficiency, drought stress, salt and heavy metal stress, high/low 

temperature, herbicide injury, or disease/insect infection, across the region. 

4. Accurate predictive models will accelerate plant breeding, enable exploring the possibility space 

for plant traits and agronomic practices to identify new optimal combinations of plant properties 

and management practices to optimize farmer profitability and sustainability. This research effort 

will facilitate the creation of knowledge of the impact of genome and environment interaction on 

plant phenotype that will result in the deployment of crops of superior varieties and species. This 

will lead to the delivery of nutritious and safe food. 

5. Facilitate rural prosperity and economic development, and thus social stability. 

6. Develop technology and tools that aid in strengthening stewardship of the land 

 

•       Timeline:  

 

TIMELINE FOR WORK PLAN YEAR 

  1 2 3 4 5 

Objective 1: Novel technologies and platforms for data acquisition and processing                     

Develop remote sensing instruments and platforms                     

Integrate multiscale sensing for data acquisition and processing                     

Develop new techniques to support processing, storage, and management of 
phenotypic data 

                    



Encourage data sharing and respect intellectual property across plant phenotyping 
facilities 

                    

Objective 2: We will develop fundamental methods in data analysis to integrate 
multi-modal and multi-temporal data for trait prediction 

                    

Integrate multidimensional data from multiple sources                     

Develop mechanistic and empirical models                     

Develop high-performance systems and intelligent visualization                     

Objective 3: Explore methods to explore the integration of phenomic and genomic 
models 

                    

Predict plant phenotype in diverse germplasm, environments and management 
systems 

                    

Discover plant genes that contribute to agricultural productivity, sustainability, 
profitability and/or quality 

                    

 

Projected Participation: This section is generated automatically as the SAESs enter 

participants. Any non-SAES participants can be entered by the Administrative Advisor. Include a 

completed table of resources utilizing the format in Appendix E. 

Outreach Plan:  

In terms of technology outreach, we aim to deliver science-based information in an effective and 

efficient way to ensure sustainability and profitability of the land. We will pursue three key 

outreach activities during this project including (1) publish the results of our work in scientific 

journals, (2) present the results of this work at national and international conferences (e.g. North 

American Plant Phenotyping Network), (3) report this work to local crop producers, 

representatives of local and national crop commodity organizations, and private sector partners 

interested in developing and commercializing new crop varieties, (4) incorporate research 

outcomes and tools into classroom learning, and (5) offer virtual and in person training workshops. 



Organization and Governance:  

We propose that the NCR be organized as a collaboration among the founding members as well 

as researchers at future participating institutions under the direction of a jointly-appointed 

Executive Committee and Technical Committee.   

The Executive Committee will consist of a Chair, Vice-Chair, and Secretary with each officer 

serving terms of 1-year with the Chair succeeded by the Vice-Chair and the Vice-Chair succeeded 

by the Secretary at the beginning of each year. Candidates for Secretary will be nominated by the 

membership of the NCR and selected by majority vote at the annual meeting. The Executive 

Committee will oversee the administrative functions of the project, plan the annual meeting, and 

provide reviews and reports as required. The Chair will convene quarterly meetings of the 

Executive and Technical Committees. The Chair will also convene, on an annual basis, a research 

summit meeting with the entire team, and will prepare the annual report. 

The Technical Committee will provide oversight to the research activities of the program.  The 

Technical Committee will consist of a Director and Associate Director for each of the key research 

thrusts: (1) data acquisition and processing, (2) fundamental methods in data analyses, and (3) 

phenotype modeling and gene discovery. The Director and Associate Director will serve 1-year 

terms with the Director succeeded by the Associate Director at the beginning of each year. 

Candidates for Associate Directors will be nominated from the membership and be selected by 

majority vote at the annual meeting. Each thrust has two co-leads to increase communication and 

synergy. The Technical Committee will meet quarterly with participating members and be 

responsible for drafting yearly reports on their progress and outputs. 

The project will be initiated with leadership from Chair Mitch Tuinstra, Vice-Chair Tala Awada, 

and Secretary Patrick Schnable.  The Directors and Associate Directors for the Technical 

Committee will include Yufeng Ge and Bryan Runck for data acquisition and processing, Yang 

Yang and Jennifer Clark for fundamental methods in data analysis, and James Schnable and Diane 

Wang for phenotype modeling and gene discovery. 

The team will incorporate the following principles for governance to: 1) Provide adequate 

administrative and scientific infrastructure to enable this complex multidisciplinary project; 2) 

Support collaborations; 3) Develop short-term, medium-term, and long-term deliverables; and 4) 

Establish an inclusive environment that fosters flexibility and responsiveness. The governance of 

this project depends on clear plans for communication. As outlined above, there are established 

schedules for interaction and clear lines of responsibility both top-down and across the research 

areas. 
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