W_TEMP2009: Integrated Systems Research and Development in Automation and Sensors for Sustainability of Specialty Crops Table-1 Logic model | Inputs | Outputs | Outcomes - Impact | | | |--|---|---|--|---| | | (Activities) | Short | Medium | Long | | Systems-based
approach by a
multi-disciplinary
and multi-
institutional team | Adaptation of biological concepts into parameters that can be sensed | Modernized, mechanization compatible crop production designs | Industry adoption of compatible crop production designs | Industry adoption of labor
saving and crop intelligence
technologies matched to
production systems | | Stakeholder
partnerships and
outreach | Production structures that fit engineering technologies Development of automated and semi-automated equipment | Research publications in the design of specialty crop technologies Specialty crop technology development to address immediate labor and crop intelligence needs of specialty crop industry | Research and extension publications on commercial field trials with specialty crop technologies | Specialty crop technology
development to address
long-term labor and crop
intelligence needs of
specialty crop industry | | Commercial
equipment and
technology
manufacturer
partnerships | Development of wide-area specialty crop data communication systems | | Workshops and other continuing education opportunities for practicing scientists and engineers | Efficient and safe work
environment for specialty
crop production and
handling workforce | | Student
internships and
graduate
assistantships | Integration of decision-making software Development of design, manufacturing and usage education modules for use in university and continuing education learning | Training of graduate and undergraduate students in the design and concepts of specialty crop automation technologies | Manufacturing workforce (design engineers, mechanics, operators) better prepared to manufacture and use automated equipment for specialty crop production and handling | Competitive advantage for domestic specialty crop producers from increasing labor efficiency and crop intelligence systems |