Table 1. Comparison of W-3147 and SDC-348 Multistate Projects

W-3147

SDC-348

Objective 1	To identify and characterize new biological agents, microbial community structures and functions, naturally suppressive soils, cultural practices, and organic amendments that improve control of diseases caused by soilborne plant pathogens.	Evaluate the population genetic diversity of soilborne pathogens and antagonistic microorganisms in different growing systems and regions using traditional and metagenomic approaches.
Objective 2	To understand how microbial populations and microbial gene expression are regulated by the biological (plants and microbes) and physical environments and how these influence disease.	Examine the effect of traditional or newly developed management strategies (chemical, cultural, and biological), soil physicochemical properties, or introduced biological control agents on the microbial community and its ability to suppress soilborne pathogens.
Objective 3	Implement sustainable management strategies for soilborne pathogens that are biologically based and are compatible with soil health management practices.	
Objective 4	Provide outreach, education, extension and technology transfer to our clients and stakeholders- growers, biocontrol industry, graduate and undergraduate students, K-12 students and other scientists.	

Table 2. Comparative analyses of research on disease systems in the two RegionalProjects

DISEASE SYSTEM	W-3147	SDC 348
Vegetables		
Seedling diseases	NY,MI	OK, MS, TN,
Seed borne diseases	WA, CA-D	
<i>Sclerotinia</i> -potato, lettuce, Lima bean	CA-D, CA-ARS	
Fusarium wilt	WA, CA-D	
Damping-off	MT, WA, NY,MI	NC, TN
Phytophthora	NM, NY,MI	TN
Rhizoctonia-beans	NY	TN
Pythium	NY, MT, OR, CA-ARS, MI	TN, NH, OK
Macrophomina	CA-R	NH
Botrytis	CA-ARS, WA	
Verticillium	CA-ARS, WA, MT	PA
Field crops		
Wheat		
Seedling disease		MS, OK, TN
Take-all	TX, WA-ARS	
Pythium-Rhizoctonia,	WA-ARS	
Fusarium	WA-ARS, NE, MT	
Soybean		
Sclerotinia	MI	NH
Pythium-Rhizoctonia	NE, IL	IA, TN
Fusarium		
Phytophthora	IL	
Snap beans		
Seedling disease	NY	MS, IA, TN
Rhizoctonia	NY	TN,
Fusarium	NY	
Pythium	NY	
Phialophora	IL	
Thielaviopsis	NY	
Cotton		
Seedling disease		OK, TN, MS
Potato Streptomyces	MN	
Sugarbeet		
Aphanomyces	МТ	
Damping-off	NE, MT	
Corn		
Fusarium		MS
Seed disease	MT	
Legumes		
Seedling disease	WA-ARS, NY	
Ornamentals and turf		

Anthracnose Fescue - leaf spot Seedling disease <i>Phytophthora-Pythium</i> Nematode diseases	NE NE NE CA-R,OR	TN OK
Sugarbeet cyst	CA-R, NY, MT	
Root knot Soybean cyst	CA-R, MT, NY CA-R, IL	
Root lesion (apple)	WA	
Citrus, avocado Phytophthora	CA-R	
Melons – Monosporascus	CA-R	
Olpidium	CA-R	
Tree Diseases Phytophthora ramorum	OR	
Peach Replant Apple Replant- <i>Rhizoctonia</i> <i>Pythium,</i>	CA-R	
Phytophthora, Cylindrocarpon Strawberry	WA-ARS	
Macrophomina, Pythium, Fusarium		

Table 3. Project Leaders

Resources State	Agency/ Institution	Principal Leader	Cooperators	Area of Specialization	SY	PY	TY
California	University of	J. Borneman		Plant Path.	0.10		
	California,						
	Riverside						
California	University of	М.		Plant Path.	0.10		
Cumorina	California,	Stanghellini		I fuilt I util.	0.10		
	Riverside	Stangheimin					
California	University of	J. O. Becker		Nematology	0.15		
Cumorinu	California,	J. O. Deeker		rteinatorogy	0.15		
	Riverside						
California	University of	A.T. Ploeg		Nematology	0.15		
Camorina	California,	A.I. Houg		rematology	0.15		
	Riverside						
California	University of	Krishna V.		Plant Path.	0.10		
Camornia	California,	Subbarao		Flaint Fault.	0.10		
		Subbarao					
Illinois	Davis	Domin		Dlont Datk 1	0.10		
Illinois	University of	Darin		Plant Pathl.	0.10	1	
N (* 1 *	Illinois	Eastburn			0.10		-
Michigan	Michigan	Jianjun Hao		Plant, Soil &	0.10		
	State			Microbial. Sci.			
	University						
Minnesota	University of	Linda Kinkel		Plant Path.,	0.10		
	Minnesota			Microbial			
				Ecology			
Montana	Montana State	Barry	Alan Dyer	Horticulture/	0.25		0.25
	University	Jacobsen		Plant Path.			
Nebraska	University of	Gary Yuen	Robert Harveson	Plant Path.	0.20		
	Nebraska						
New Jersey	Rutgers	James White		Plant Path.	0.20		
	University						
New Mexico	New Mexico	Soun Sanogo	Manoj Shukla	Plant Path.	0.10		
	State	_					
New York	NY SAES	G. S. Abawi		Plant Path/	0.10		0.3
	Geneva			Nematol.			
New York	NY SAES	Chris Smart		Plant Path.	0.10		0.1
	Geneva						
New York	NY SAES	Gary Harman		Plant Path.			
	Geneva						
Maryland	USDA-ARS	Tim Widmer	1	Plant Path.	0.15		1
	Foreign					1	
	Disease -					1	
	Weed Science					1	
	Research Unit						
Maryland	University of	Kathyrn		Plant Path.	0.5		1
1.1ui y lullu	Maryland	Everts		I mint I mult.	0.5		
Mississippi	Mississippi	Nina Ghanem	+	Plant Pathology	0.3	+	
mississiphi	State Univ.			r faitt i athology	0.5	1	
Mississippi		Sead		Plant Pathology	0.1		1
wiississippi	Mississippi State Univ			riant ratiology	0.1	1	
	State Univ.	Sabanadzovic				1	

Project Leaders.

Oklahoma	Oklahoma	Michael		Microbial	0.50		
	State	Anderson		ecology			
Oregon	Oregon State	Jennifer Parke	Nik Grünwald	Plant Path./Soil	0.15		
	University			Science			
Texas	Texas A and	Elizabeth					
	М	Pierson					
Washington	ARS/USDA	Timothy		Plant Path.	0.15		
U		Paulitz					
Washington	ARS/USDA	Mark		Plant Path.	0.15		
U		Mazzola					
Washington	ARS/USDA	Dave Weller		Molecular Biol.	0.10		
-			L. Thomashow		0.2		
			D. Mavrodi			0.2	
Washington	ARS/USDA	Patricia		Molecular Biol.	0.10		
C		Okubara					
Washington	Washington	Lindsey Du		Plant Path.	0.15	1	
2	State	Toit					
	University						

Pathogen	State	Obj. 1	Obj. 2	Obj. 3	Obj. 4
8		(Identification)	(Mechanisms)	(Development)	(Outreach)
Fusarium	Illinois	X	X	X	X
	Maryland	Х			Х
	New York	Х			Х
	Oregon	Х		Х	Х
	Washington	Х	Х	Х	
	Maryland	Х		Х	Х
	Montana	Х		Х	
	Minnesota		Х		
Heterodera	California	Х	Х	Х	Х
	Montana	Х		Х	Х
	Washington				Х
Meloidogyne	California	Х	Х	Х	Х
07	New York	Х	Х		Х
	New	Х	Х		Х
	Mexico				
	Montana	Х		Х	Х
Pratylenchus	New York	Х	Х		Х
,	Washington				Х
	U U				
Gaeumannomyces	Washington	Х	Х	Х	Х
2	Texas		Х		Х
Macrophomina	Washington	Х			
Phialophora	Illinois	Х			
Pythium					
<u>j</u>	Texas		Х		Х
	California	Х		Х	Х
	Montana				Х
	New York	Х		Х	Х
	Oregon	Х	Х	Х	Х
	Washington		Х		Х
	Nebraska	Х	Х	X	Х
	Minnesota	Х	Х	Х	Х
	Michigan				
Phytophthora	California	Х	Х	X X	Х
* *	New	Х	Х		Х
	Mexico				
	Oregon	Х			Х
	New York				Х
	Michigan			Х	

Rhizoctonia	California	Х	X	X	Х
	Illinois	Х		X	Х
	Montana	Х		X	Х
	New York	Х	X	X	Х
	Washington	Х	Х	X	Х
Thielaviopsis	New York	Х		X	X
Sclerotinia	California	Х		Х	Х
	Michigan			Х	
	Maryland	Х		Х	Х
Verticillium	New	Х	X		Х
	Mexico				
	California	Х		Х	Х
	Montana				Х
Botrytis	WA				Х
	CA				Х
Monosporascus	California	Х			Х
Olpidium	California	Х			Х
Streptomyces	Minnesota	Х	X	Х	Х
scabies	Michigan			Х	

Contributing State	Target pathogen	Biocontrol agent
CA-Riverside	Meloidogyne spp.	Suppressive soil; <i>Pochonia</i> <i>chlamydosporium</i>
CA-Riverside	Heterodera schachtii	Suppressive soil, <i>Fusarium</i> spp., <i>Dactylella oviparasitica</i>
CA-Riverside	Phytophthora cinnamomi	Rozella sp. Bacillus sp., Hyphodontia sp., Trichoderma sp.
CA-Riverside	Monosporascus cannonballus	Actinomycetes
CA-Riverside	Zoosporic pathogens	Biosurfactant-producing bacteria
CA-Davis	Sclerotinia spp.	<i>Brassica</i> amendments, green manure
Illinois	Rhizoctonia solani, Fusarium virgaliforme, Phialophora gragata	Cultural practices
Maryland	Fusarium oxysporium	Suppressive soils,
	Sclerotinia sclerotiorum	Coniothyrium minitans
Michigan	Sclerotinia sclerotiorum	Coniothyrium minitans, Trichoderma spp.
Michigan	Streptomyces scabies	Bacillus spp., suppressive soil
MT	<i>Rhizoctonia solani, Botrytis cinerea, Pythium</i> sp.	Muscodor albus, Bacillus pumilis
MT	Verticillium dahliae	Muscodor albus
MN	Streptomyces scabies Pythium, Phytophthora Fusarium	<i>Streptomyces spp.</i> , suppressive soils, cultural practices
New Mexico	Verticillium dahliae Phytophthora capsici	Green manure and organic amendments
NY	Meloidogyne hapla Fusarium, Rhizoctonia, Pratylenchus	Cultural practices
NY	Phytophthora capsici	cultural practices, <i>Muscodor albus</i> ,
OR	Phytophthora spp.	cultural practices, solarization, <i>Trichoderma</i> spp.
ARS-WA	Aphanomyces euteiches <u>:</u> Fusarium solani; Fusarium oxysporum	Suppressive soils

 Table 5. Biological Control Category 1: Biocontrol of pathogen inoculum.

Contributing State	Target pathogen	Biocontrol agent
CA-Riverside Meloidogyne spp.		Suppressive soils; Pochonia chlamydosporium
CA-Riverside	Heterodera schachtii	Suppressive soils; <i>Fusarium</i> spp., <i>Dactylella oviparasitica</i> .
CA-Riverside	Plant-parasitic nematodes	Biorational nematicides
CA-Riverside and ARS- WA	Rhizoctonia solani, R. oryzae	Suppressive soils
MT	Pythium ultimum Aphanomyces cochlioides Rhizoctonia solani	Pseudomonas aureofaciens Bacillus pumilis
NY	Rhizoctonia solani, Pythium ultimum, Thielaviopsis basicola, Fusarium oxysporum f. sp. phaseoli Meloidogyne hapla, Pratylenchus penetrans	Trichoderma harzianum. Bacillus subtilis, Gliocladium virens, Laetisaria arvalis, Streptomyces sp.
Oregon	root-infecting fungi	Burkholderia cepacia
ARS-OR and ARS-WA	<i>Rhizoctonia solani, Pythium</i> spp.	Pseudomonas fluorescens Pf5,
ARS-WA and ARS-CA	<i>Pythium</i> spp.	Suppressive soils
ARS-WA	Gaeumannomyces graminis var. tritici	Suppressive soils
ARS-WA and TX	Gaeumannomyces graminis var. tritici, Rhizoctonia solani, R. oryzae, Pythium spp.	Pseudomonas fluorescens, P. aureofaciens, Bacillus sp.
ARS-WA	Gaeumannomyces graminis var. tritici, Rhizoctonia solani, R. oryzae, Pythium spp.	Superior colonizing strains of <i>Pseudomonas fluorescens</i>
Michigan	Streptomyces scabies	Bacillus amyloliquefaciens

Table 6. Biological Control Category 2	: Biological protection of plant surfaces.

Contributing State	Target pathogen	Biocontrol agents
CA-Riverside	Heterodera schachtii,	Dactylella oviparasitica, Pochonia chlamydosporium,
	Meloidogyne spp.	biorational nematicides
Michigan	Streptomyces	Chestnut tissue
MT	Verticillium dahliae,	Muscodor albus
	Colletotrichum coccodes	
	Pythium ultimum	
	Aphanomyces cochlioides	
	Rhizoctonia solani	
	Heterodera schachtii,	
	Meloidogyne spp.	
MN	Potato scab, <i>Pythium</i> ,	Streptomyces
	Phytophthora, Fusarium	
NM	Phytophthora capsici	Seed and soil treatment with
	Verticillium dahliae	Bacillus and Streptomyces
	Rhizoctonia solani	species
NY	Rhizoctonia, Fusarium,	Bacillus subtilis, Gliocladium
	Pythium, and Thielaviopsis	virens, strain T22 of
	spp., Meloidogyne hapla	Trichoderma harzianum
	Pratylenchus penetrans	(Bioworks, NY), Streptomyces
		sp.
OR	Phytophthora spp.	Muscodor albus
ARS-OR	Rhizoctonia solani, Pythium	Pseudomonas fluorescens Pf5
	spp.	Č.
ARS-WA	Gaeumannomyces graminis	Pseudomonas fluorescens
	var. tritici, Rhizoctonia	Q8R1 and other isolates
	solani, R. oryzae, Pythium	-
	spp.	

Table 7. Strategy 1: The treatment of plant material and soil with biocontrol agentsto maintain soil quality and health.

 Table 8. Strategy 2: To encourage natural biological control with mulches, soil composts, and/or cropping practices to increase and support biocontrol agents.

Contributing State	Target pathogen	Practices		
CA-Riverside	Heterodera schachtii, Meloidogyne spp.	Cropping sequences to support soil suppressiveness		
CA-Davis	Sclerotinia spp.	Brassica amendments, green manure		
ARS-CA	Verticillium dahliae	Myxobacteria		
MD	Fusarium oxysporum	Green manure amendment		
MI	Streptomyces scabies, Pythium, Phytophthora	Cover crops, suppressive soil		
MN	Streptomyces scabies, Pythium, Phytophthora	Green manures, organic and targeted nutrient inputs, cropping sequences, tillage frequency		
МТ	Fusarium crown rot	Green manures		
New Mexico	Verticillium dahliae Phytophthora capsici	Green manure and organic amendments		
NY	Rhizoctonia, Fusarium, Pythium,and Thielaviopsis spp., Meloidogyne hapla, Pratylenchus spp. Phytophthora capsici	Crop rotation, tillage systems, green manures, biocontrol agents		
OR	Phytophthora spp.	Cultural practices		
ARS-WA	Gaeumannomyces graminis var. tritici, Rhizoctonia solani, R. oryzae, Pythium spp., Fusarium pseudograminearum, F. culmorum	Effect of direct-seeding (no-till) on development of suppressiveness, cultural practices (fallow, greenbridge control)		
ARS-WA	Gaeumannomyces graminis var. tritici, Rhizoctonia solani, R. oryzae, Pythium spp. Fusarium pseudograminearum, F. culmorum	Effect of crop rotation on maintenance of suppressiveness, and influence of host plant on population structure of biocontrol agent and other microbes		
ARS-WA	Pratylenchus penetrans, Pythium spp., Phytophthora cactorum, Phytophthora cambivora, Rhizoctonia solani	Effect of defined amendments on development and maintenance of soil suppressiveness, identification of functional populations, and influence of host genotype on mediating response		

Table 9 Milestones/Timeline

	Year 1 2013	Year 2 2014	Year 3 2015	Year 4 2016	Year 5 2017	
Objective 1	Develop novel survey techniques to identify suppressive soils. Determine biological cause of suppression				Determine crop rotations or cultural methods (organic amendments, cover crops) that induce, sustain or enhance soil suppressiveness	
		Culture, isolate and identify putative organisms, including genetically diverse strains of same species Demonstrate through (re-)introduction into disturbed (treated) and undisturbed soil the strains role in suppression (equivalent of Koch's postulates) in greenhouse and field microplots.			genetically diverse es Demonstrate tion into disturbed bed soil the strains equivalent of Koch's	
		Evaluate cultural methods in field trials such as strip tillage, greenbridge control, biofumigation, anaerobic soil disinfestation, seedmeal amendments, green manures, trap crops, etc.				
				Create more effective model for cyst nemat		

Objective 2	Complete sequencing biocontrol bacteria	Complete sequencing of additional biocontrol bacteria		Annotate and mine sequences, looking for unique sequences that may identify new chemistries and modes of action.		
	Continue to investigate the mechanisms listed in proposal					
Objective 3	 Establishment and maintenance of research and/or demonstration sites on field research and extension centers Diagnosis of diseases and quantification of the population and damage of the prevalent major soilborne pathogens in the selected sites. Identification of disease and soil health management strategies and 	 Establish the selected combination(s) of disease and soil health management practices at the research and/or demonstration sites. Assess the impact of the evaluated management strategies and practices on plant health and productivity at the end of the growing season. Share and discuss the results obtained 	 Evaluate impact of the selected practices and control strategies for the second growing season (cropping cycle/rotation year 2). Adjust management options/practices as dictated and based on the results obtained in year 2. Provide outreach to stakeholders on the prevalent soilborne pathogens 	 Plant and maintain the research and/or demonstration plots for another growing season. Quantify the population and damage of soilborne pathogens, crop yield, and soil health parameters. Determine the cost-benefit of the utilized management options/practices. Conduct the outreach activities 	 Final assessment and prioritization of the impact of management strategies and selected practices against soilborne pathogens and soil health. Promotion and facilitation of the effective management strategies and practices against soilborne pathogens that are compatible with soil health management needs. Conducting 	
	practices to be included in the evaluation at the selected sites.	with stakeholders and industry personnel.	and with an update on the results obtained from the research aimed at	on the damage and management of soilborne pathogens and soil health in	surveys to document the level of adoption and implementation of	

			controlling their damage and/or reducing their populations.	general.	promoted strategies and practices against soilborne pathogens by stakeholders.
Objective 4	Identify member (s) from industry for membership in W- 3147, invite to meetings				
	0	Write and incorporate recommendations for organic and conventional production in crops that are covered by members. t strategies for nematodes on vegetables in NY (eg. garlic bloat nematode) and provide for <i>Phytophthora capsici</i> .			
	Continue with outreach to growers, pest control advisors, industry, science, policy makers, and the general public				